Sensor Noise

CPS 1/296 Ron Parr

What is Sensor Noise?

Low noise: http://bellman.cs.duke.edu/~parr/train/20D/normal/IMG_9071.JPG

High(er) noise: http://bellman.cs.duke.edu/~parr/train/20D/normal/IMG_9076.JPG

Talking About Noise

- Engineers are somewhat talking about noise
- Precise way: State distribution over output as a function of luminance (+ environmental factors)
- In practice: Often use SD as a surrogate for this, but it does cause some confusion in some cases

Sources of Sensor Noise

- · Dark current (thermal) noise
- Dark current non-uniformity
 - Substrate
- Environment (amp glow)Photon "shot" noise
- Reset noise
- Amplifier noise
 - Pixel level (CMOS)
 - General
- A/D converter noise (not necessarily what you see at high ISO)
 - Noise in converter itself
 - Discretization noise
- Readout noise/losses/electron migration
- · General non-uniformity (fixed pattern noise)

Dark Current

- Dark current is the accumulation of charge unrelated to exposure
- Dark current is proportional to area
- (more area = more substrate to lose electrons)
- Dark current is proportional to exposure time
- · Dark current grows exponentially with temperature

$$D = 2.5x10^{15} A I_d T^{1.5} e^{\frac{E_g}{2kT}}$$

 D = electrons/pixle/s, A = pixel area (cm²), T = temperature in Kelvin, I_d = reference dark current level (measured at 300K), k= Boltzman's constant E_g = bandgap of silicon (function of T)

Modeling Dark Current

- · Equation tells us the mean amount of dark current
- · What is the distribution?
- · Gap between electron release is exponential
- · View dark current accumulation as a Poisson process
- · Conclusions:
 - Variance = mean
 - SD = sqrt(mean)

Dealing with Dark Current

- · Why do camera manufacturers count their pixels in a funny way?
- · Sensors have an optically shielded border of "dark" pixels
 - Can be used to estimate dark current level
 - Subtract off mean dark current value

Understanding Dark Current Subtraction

- · Suppose dark current level is x
- · Large number of pixels used to estimate x means our estimate of the mean is pretty good
- · Each pixel has:
 - Mean "extra" brightness of x
 - SD of extra brightness is sqrt(x)
- · After subraction, each pixel has
 - Mean "extra" brightness of 0
 - SD of extra brightness very close sqrt(x) (why not more?)

Dealing with Non-uniformity (for dark current, but generalizes)

- Suppose I_d is different for each pixel
- Border pixels don't tell the full story
- Use double sampling:
 - Take one regular shot
 - Take a second shot of same duration w/shutter closed
 - Subtract
- Modeling the noise:
 - Suppose dark current level is x
 - Both exposures are independent samples
 - Mean x
 - SD = sqrt(x)
 - After subtraction
 - Mean dark current = 0 • SD = 1.4 sqrt(x) Why is this different from the previous slide?

Photon Shot Noise

- Electron liberation by photons is also a Poisson process
- · Mean charge generated is proportional to luminance
- Since Poisson, SD(sqrt(mean))
- · Counterintuitive result: Brighter areas and brighter scenes have more noise!?!?

SNR Comments

- Our perception of noise comes from low signal to noise ratio, not high total noise
- Brighter exposures have more total noise, but higher SNR
- · Larger pixels also have more total noise (dark current proportional to area)
- Also have higher SNR since (intended) charge generation also proportional to area

General Comments

- Shot noise, dark current most easily measured sources of noise - tend to dominate in consumer devices
- Why do large digital SLRs produce nicer images? Larger pixels, higher SNR
- What is happening as pixels get smaller(higher MP cameras?)
 - Lower SNR
- Smaller fraction of pixel captures light

 So, are cameras getting worse? Not necessarily:
 - Sources of noise reduced through engineering
 - Pixel architecture changes can reduce area lost
 - Improved microlenses
 - Software noise reduction (sometimes hurts)