Towards Support for Uncertainty: MauveDB

Jun Yang
CPS 296.1, Spring 2007
Sensor Data Processing
With contents from A. Deshpande

Towards support for uncertainty

Announcements (Mar. 6)
- This Thursday: project proposal talk
 - 15 minutes per group; 20% of total grade
 - What is it? Why do we care? Hasn’t it been done before? Plans, thoughts, and preliminary results?
 - Submit your slides after class

Motivation
- Unprecedented, and rapidly increasing, instrumentation of our every-day world
- Overwhelmingly large raw data volumes generated continuously
- Data must be processed in real-time
- Typically imprecise, unreliable and incomplete data
 - Measurement noises (e.g. GPS) and low success rates (e.g. RFID)
 - Link or node failures (e.g. wireless sensor networks)
 - Spatial and temporal biases because of measurement constraints
- Traditional databases are ill-equipped to handle these challenges

Example: wireless sensor networks

- User wants to query the “underlying environment,” and NOT the sensor readings at selected locations

Impedance mismatch

A wireless sensor network deployed to monitor temperature
Typical solution

- Process data using a statistical/probabilistic model
 - E.g., regression and interpolation
 - Eliminate spatial/temporal biases, handle missing data, predict
 - E.g., Kalman Filters, Bayesian Networks
 - To eliminate measurement noise, to infer hidden variables, etc.

Issues

- Databases typically only used as a backing store
- All data processing done outside!
- Processing is non-trivial
 - Expert knowledge & MATLAB familiarity may be required!
 - Lack of support for querying the processed data
 - Cannot exploit commonalities, reuse code, or share computation
 - Large amount of duplication of effort
- No easy way to keep the model outputs up to date
- Prevents real-time data analysis in most cases

Solution: model-based user views

- Abstraction analogous to traditional database views
- Provides independence from the messy measurement and modeling details

MauveDB system

- Supports the abstraction of Model-based User Views
- Provides declarative language constructs for creating such views
- Supports SQL queries over model-based views
- Keeps the models up-to-date as new data is inserted into the database

Example: linear regression

- Models a dependent variable as a function of a set of independent variables
 - Model temperature as a function of x, y, e.g.
 \[\text{temp} = w_1 + w_2 \times x + w_3 \times y + w_4 \times x^2 + w_5 \times y^2 \]

Grid abstraction

- Apply regression; Compute "temp" at grid points
Defining a regression-based view

CREATE VIEW
RegView(time [0::1],
 x [0:100:10], y [0:100:10], temp)
AS
FIT temp USING time, x, y
BASES 1, x, x*x, y, y*y
FOR EACH time T
TRAINING DATA
SELECT temp, time, x, y
FROM raw_temp_data
WHERE raw_temp_data.time = T

Schema of the view
Model to be used
Training data for learning parameters

Query a model-based view

Analogous to traditional views, e.g.:

- SELECT * FROM RegView;
 - Lists out temperatures at all grid points
- SELECT * FROM RegView
 WHERE x = 15 AND y = 20;
 - Lists temperature at (15, 20) at all times
- SELECT temp FROM IntView
 WHERE sensorid = 7 AND t = 100;
 - Find the temperature at node 7 at time 100

View creation syntax

- Somewhat model-specific, but many commonalities
- E.g., an interpolation-based view:
 CREATE VIEW IntView(t [0::1], sensorid [::1], temp) AS
 INTERPOLATE temp USING time, sensorid
 FOR EACH sensorid M
 TRAINING DATA SELECT temp, time, sensorid FROM raw_temp_readings
 WHERE raw_temp_readings.sensorid = M

Query processing

- Two operators
 - ScanView: returns the contents of a view tuple by tuple
 - IndexView(cond): return only tuples matching cond
 - E.g., return temperature where (x, y) = (10, 20)

View maintenance strategies

- No materialization: compute view as needed from base data
 - E.g., for regression view, scan the tuples and compute the weights
- Keep the view materialized
 - Sometimes too large to be practical (e.g., a fine grid)
 - May need to be recomputed with every new tuple (e.g., a regression view that fits a single function to the entire data)
- Lazy materialization/caching
 - Materialize query results as computed
- Maintain an efficient intermediate representation
 - Typically model-specific

Intermediate rep. for regression

- Regression-based view
 - Training data \(\{ (x_i, y_i, temp_i) \}, i = 1, \ldots, m \)
 - Regression model: \(w_1 b_1(x, y) + \ldots + w_k b_k(x, y) \)
 - Optimal \(w_i \)'s (that minimize root-mean-squared error)
can be found by solving for \(w \) below:
 \[
 H = \begin{pmatrix}
 b_1(x_1, y_1) & \cdots & b_k(x_1, y_1) \\
 \vdots & \ddots & \vdots \\
 b_1(x_m, y_m) & \cdots & b_k(x_m, y_m)
 \end{pmatrix},
 f = \begin{pmatrix}
 temp_1 \\
 \vdots \\
 temp_m
 \end{pmatrix},
 H^T H w = H^T f
 \]
 - Maintain \(H^T H \) (\(k \times k \)) and \(H^T f \) (\(k \times 1 \))
 - Easy to update when new training data becomes available
Intermediate rep. for interpolation

- Linear interpolation-based view
 - Training data \(\{(t_i, v_i)\} \)
 - Given \(t \), find \(v \): search tree with \(t \) as key
 - Given \(v \), find \(t \): interval tree on \(\{[t_i-1, v_i)\} \)

Experiment data

- Intel Lab dataset
 - 54-node network
 - Attributes used: \(\text{time, sensorID, x, y, temperature} \)

Spatial regression

View maintenance options

- 50000 tuples initially
- Mixed workload
 - Insert 1000 records
 - Issue 50 point queries
 - Issue 10 average queries
- Intermediate representation typically the best
- Among others, dependent on the view properties and query workload

Interpolation

Discussion

- Vision: uniform application access to result of statistical analysis
- Models inside DB or outside DB?
- MauveDB hides uncertainty, instead of exposing it
 - Does this approach work for all applications?
- Ongoing and future work
 - Support for views based on dynamic Bayesian Networks
 - Can expose uncertainty; data model may need change