|
|
Reading
Books and Lecture Notes
- S. Har-Peled, Geometric Approximation Algorithms, Department of Computer Science, UIUC, 2006.
- J.-R. Sack and J. Urrutia (eds.), Handbook of Computational Geometry. North-Holland, 2000.
- J. E. Goodman and J. O'Rourke (eds.), Handbook of Discrete and Computational Geometry, 2nd edition, CRC Press LLC, Boca Raton, FL, 2004.
- J. Matoušek, Lectures on Discerete Geometry, Springer, Heidelberg, 2002.
- R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
- B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge University Press, 2000.
Survey Papers
- S. Arora, Approximation schemes for NP-hard geometric optimization problems: A survey, Math Programming, 97, 2003.
- M. Goldwasser, A survey of linear programming in randomized subexponential time, SIGACT News, 26 (1995), 96-104.
- P. K. Agarwal and M. Sharir, Efficient algorithms for geometric optimization. ACM Comput. Surv. 30:412-458, 1998.
- P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Geometric approximation via coresets, in Combinatorial and Computational Geometry (J. E. Goodman, J. Pach, and E. Welzl, eds.), Cambridge University Press, New York, 2005, 1-30.
- B. Gärtner and E. Welzl, Linear programming randomization and abstract frameworks, Proc. 13th Ann. Symp. on Theoret. Aspects of Comput. Sci., 1996, 669-687.
Linear Programming
- T. Terlaky, An easy way to teach interior-point methods, European J. Operations Research, 130 (2001), 1-19.
- M. Grötschel, L. Lovász, and L. Schrijver, Geometric Algorithms and Combinatorial Optimization, 2nd ed., Springer, Heidelberg, 1994.
- F. A. Potra and S. J. Wright, Interior-point methods, J. Comput. Appl. Math. 124 (2000), 281-302.
- K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the dimension is small, J. ACM 42(2):488-499, 1995.
- G. B. Dantzig, Linear Programming, (Historical Account), www2.informs.org/History/ dantzig/LinearProgramming_article.pdf .
- L. Lovász, Semidefinite programs and combinatorial optimization, in Recent Advances in Algorithms and Combinatorics (B. Reed and C. Linhares-Sales, eds.), Springer, New York, 2003, 137-194. (Lecture Notes)
- R. Seidel, Small-dimensional linear programming and convex hulls made easy, Discrete Comput. Geom. 6(5):423-434, 1991.
- D. A. Spielman and S.-H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time, J. ACM 51(3):385-463, 2004
- M. J. Todd, The many facets of linear programming, Mathematical Programming 91: 417-436 (2002).
J.A. Kelner and D.A. Spielman, A randomized polynomial-time simplex algorithm for linear programming, STOC '06, 2006, 51-60.
Parametric Searching
- N. Megiddo, Applying parallel computation
algorithms in the design of serial algorithms,
J. ACM, 30 (1983), 852-865.
- R. Cole, J. Salowe, W. Steiger, and E. Szemerédi,
An optimal-time algorithm for slope selection,
SIAM J. Comput., 18 (1989), 792-810.
- M. J. Katz and M. Sharir,
Optimal slope selection via expanders,
Inform. Process. Lett., 47 (1993), 115-122.
- J. Matoušek and O. Schwarzkopf,
Linear optimization queries,
J. Algorithms, 14 (1993), 432-448.
- P. K. Agarwal and J. Matoušeku,
Ray shooting and parametric search,
SIAM J. Comput., 22 (1993), 794-806.
ε-approximations and ε-nets
- B. Chazelle, The Discrepancy Method in
Computational Geometry, Handbook of Discrete and Computational Geometry,
2nd ed. (J. Goodman and J. O'Rourke, eds), 983-996, CRC Press, 2004.
- K.L. Clarkson and P.W. Shor, Applications
of random sampling in computational geometry,
Discrete Comput. Geom., 4(1989), 387-421.
- D.Haussler and E.Welzl, Epsilon-nets and
simplex range queries,
Discrete Comput. Geom., 2(1987), 127-151.
- J.Matoušek, Epsilon-nets and computational geometry,
in: New Trends in Discrete and Computational Geometry
(J.~Pach, ed.), Algorithms and Combinatorics, , Vol. 10,
Springer-Verlag, 1993, pp. 69-89
- J. Pach and P. K. Agarwal. Combinatorial Geometry.
John Wiley & Sons, New York, NY, 1995.
- A. Bagchi, A. Chaudhary, D. Eppstein, and M. Goodrich.,
Deterministic sampling and range counting in geometric data streams.,
Proc. 20th Annu. Sympos. Comput. Geom.,
pages 144-151, 2004.
Core Sets
- P.K. Agarwal, S.Har-Peled, and K.R. Varadarajan,
Approximating extent measures of points,
J. Assoc. Comput. Mach.,
51(2004), 606-635.
- T.M. Chan,
Faster core-set constructions and data stream
algorithms in fixed dimensions,
Proc. 20th Annu. ACM Sympos. Comput. Geom.,
2004, pp.152-159.
- G.Barequet and S.Har-Peled, Efficiently approximating
the minimum-volume bounding box of a point set in three dimensions,
J. Algorithms, 38(2001), 91-109..
- H.Yu, P.K. Agarwal, R.Poreddy, and K.R. Varadarajan,
Practical methods for shape fitting and kinetic
data structures using core sets,
Proc. 20th Annu. ACM Sympos. Comput. Geom.,
2004, pp.263-272.
- P.K. Agarwal, S.Har-Peled, and H.Yu.,
Robust shape fitting via peeling and grating coresets.,
Proc. 17th ACM-SIAM Sympos. Discrete Algorithms,
pages 182-191, 2006.
Shape Fitting and Clustering
- B. Gärtner, A subexponential algorithm for
abstract optimization problems,
SIAM J. Comput., 24(1995), 1018-1035.
- Mihai Badoiu, Kenneth L. Clarkson,
Smaller core-sets for balls,
SODA, (2003) pp.801-802.
- B. Chazelle and J. Matoušek,
On linear-time deterministic algorithms for optimization problems
in fixed dimension,
J. Algorithms, 21(1996), 579-597.
- Z. Drezner, The p-centre
problems - Heuristic and optimal algorithms,
J. Oper. Res. Soc., 35(1984), 741-748.
- T. Feder and D.H. Greene, Optimal algorithms
for approximate clustering,
Proc. 20th Annu. ACM Sympos. Theory Comput.,
(1988), pp.434-444.
- Megiddo and K.J. Supowit, On the complexity of some
common geometric location problems,
SIAM J. Comput., 13(1984), 182-196.
- T. Gonzalez, Clustering to minimize the maximum
intercluster distance,
Theoret. Comput. Sci.,
38(1985), 293-306.
- T. Gonzalez,
Covering a set of points in multidimensional space,
Inform. Process. Lett., 40(1991), 181-188.
- M. Badoiu, S. Har-Peled, and P. Indyk
Approximate clustering via core-sets,
Proc. 34th Annu. ACM Sympos. Theory Comput.,
(2002), pp.250-257.
- S. Har-Peled and S. Mazumdar,
Coresets for k-means and
k-median clustering and their applications,
Proc. 36th Annu. ACM Sympos. Theory Comput.,
(2004), pp.291-300.
- D. Arthur and S. Vassilvitskii,
How slow is the k-means method?,
Symposium on Computational Geometry,
(2006), pp.144-153.
- D. Arthur and S. Vassilvitskii,
Worst-case and Smoothed Analysis of the ICP Algorithm, with an Application
to the k-means Method,
FOCS , (2006) pp.153-164.
D. Arthur and S. Vassilvitskii,
k-means++: The Advantages of Careful Seeding,
SODA '07, (2007).
Geometric Packing and Covering 
- Jorge Urrutia,
Art gallery and illumination problems,
In Hanbook on Computational Geometry (J.-R. Sack and J. Urrutia, eds.), North Holland, pp. 387-434, 1997.
- V. Chvátal,
A greedy heuristic for the set-covering problem,
Math. Oper. Res., 4:233-235, 1979.
- H. Brönnimann and M.T. Goodrich,
Almost optimal set covers in finite VC-dimension,
Discrete Comput. Geom., 14:263-279, 1995.
- U. Feige, A threshold of ln(n) for approximating set cover,
Journal of the ACM (JACM),
v.45 n.4, p.634-652, July 1998.
- K.L. Clarkson, K.R. Varadarajan,
Improved approximation algorithms for geometric set cover,
Symposium on Computational Geometry,
2005: 135-141.
Network Design 
- G. Narasimhan and M. Smid, Geometric Spanning Networks,
Cambridge University Press, 2007.
- D. Eppstein, Spanning trees and spanners, In
Handbook of Computational Geometry
(J.-R. Sack and J. Urrutia, eds.), North Holland, pp. 425--461, 1997..
|