CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Transforming Grammars (Ch. 6) (handout)

Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_0.

$$S_0 \rightarrow S \mid \lambda$$

Theorem (Substitution) Let G be a CFG. Suppose G contains

$$A \rightarrow x_1Bx_2$$

where A and B are different variables, and B has the productions

$$B \rightarrow y_1y_2\ldots y_n$$

Then can construct G’ from G by deleting

$$A \rightarrow x_1Bx_2$$

from P and adding to it

$$A \rightarrow x_1y_1 y_2x_2 \ldots x_1y_nx_2$$

Then, $L(G)=L(G')$.

Example:

$S \rightarrow aBa$ becomes
$B \rightarrow aS \mid a$

Definition: A production of the form $A \rightarrow Ax, A \in V, x \in (V \cup T)^*$ is *left recursive*.
Example Previous expression grammar was left recursive.

\[
\begin{align*}
E & \rightarrow E + T \mid T \\
T & \rightarrow T * F \mid F \\
F & \rightarrow I \mid (E) \\
I & \rightarrow a \mid b
\end{align*}
\]

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive
grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a
sentential form that has other terminals in it.

Derivation of \(a+b+a+a\) is:

\[
\begin{align*}
E & \Rightarrow E + T \\
& \Rightarrow E + T + T \\
& \Rightarrow E + T + T + T \\
& \Rightarrow a + T + T + T
\end{align*}
\]

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and
no other terminals.

Theorem (Removing Left recursion) Let \(G=(V,T,S,P)\) be a CFG. Divide productions for variable \(A\) into
left-recursive and non left-recursive productions:

\[
\begin{align*}
A & \rightarrow A x_1 \mid A x_2 \mid \ldots \mid A x_n \\
A & \rightarrow y_1 \mid y_2 \mid \ldots \mid y_m
\end{align*}
\]

where \(x_i, y_i\) are in \((V \cup T)^*\).

Then \(G'=(V \cup \{Z\}, T, S, P')\) and \(P'\) replaces rules of form above by

\[
\begin{align*}
A & \rightarrow y_i \mid y_i Z, \ i=1,2,\ldots,m \\
Z & \rightarrow x_i \mid x_i Z, \ i=1,2,\ldots,n
\end{align*}
\]

Example:

\[
\begin{align*}
E & \rightarrow E + T \mid T \quad \text{becomes} \\
T & \rightarrow T * F \mid F \quad \text{becomes}
\end{align*}
\]

Now, Derivation of \(a+b+a+a\) is:
Useless productions

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \]
\[C \rightarrow cBc \mid a \]

What can you say about this grammar?

Theorem (useless productions) Let \(G \) be a CFG. Then \(\exists \ G' \) that does not contain any useless variables or productions s.t. \(L(G)=L(G') \).

To Remove Useless Productions:

Let \(G=(V,T,S,P) \).

I. Compute \(V_1=\{\text{Variables that can derive strings of terminals}\} \)

1. \(V_1=\emptyset \)
2. Repeat until no more variables added
 - For every \(A\in V \) with \(A\rightarrow x_1x_2\ldots x_n, x_i \in (T^* \cup V_1) \), add \(A \) to \(V_1 \)
3. \(P_1 = \text{all productions in } P \text{ with symbols in } (V_1 \cup T)^* \)

Then \(G_1=(V_1,T,S,P_1) \) has no variables that can’t derive strings.

II. Draw Variable Dependency Graph

For \(A \rightarrow xBy \), draw \(A \rightarrow B \).

Remove productions for \(V \) if there is no path from \(S \) to \(V \) in the dependency graph. Resulting Grammar \(G' \) is s.t. \(L(G)=L(G') \) and \(G' \) has no useless productions.

Example:

\[S \rightarrow aB \mid bA \]
\[A \rightarrow aA \]
\[B \rightarrow Sa \mid b \]
\[C \rightarrow cBc \mid a \]
\[D \rightarrow bCb \]
\[E \rightarrow Aa \mid b \]
Theorem (remove λ productions) Let G be a CFG with λ not in $L(G)$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L(G')$.

To Remove λ-productions

1. Let $V_n = \{A \mid \exists \text{ production } A \rightarrow \lambda \} $
2. Repeat until no more additions
 - if $B \rightarrow A_1A_2\ldots A_m$ and $A_i \in V_n$ for all i, then put B in V_n
3. Construct G' with productions P' s.t.
 - If $A \rightarrow x_1x_2\ldots x_m \in P$, $m \geq 1$, then put all productions formed when x_j is replaced by λ (for all $x_j \in V_n$) s.t. $|\text{rhs}| \geq 1$ into P'.

Example:

\[
\begin{align*}
S &\rightarrow Ab \\
A &\rightarrow BCB \mid Aa \\
B &\rightarrow b \mid \lambda \\
C &\rightarrow cC \mid \lambda
\end{align*}
\]
Definition Unit Production

\[A \to B \]

where \(A, B \in V \).

Consider removing unit productions:

Suppose we have

\[A \to B \quad \text{becomes} \]
\[B \to a \mid ab \]

But what if we have

\[A \to B \quad \text{becomes} \]
\[B \to C \]
\[C \to A \]

Theorem (Remove unit productions) Let \(G=(V,T,S,P) \) be a CFG without \(\lambda \)-productions. Then \(\exists \) CFG \(G'=(V',T',S,P') \) that does not have any unit-productions and \(L(G)=L(G') \).

To Remove Unit Productions:

1. Find for each \(A \), all \(B \) s.t. \(A \Rightarrow B \) (Draw a dependency graph)
2. Construct \(G'=(V',T',S,P') \) by
 (a) Put all non-unit productions in \(P' \)
 (b) For all \(A \Rightarrow B \) s.t. \(B \Rightarrow y_1 \mid y_2 \mid \ldots y_n \in P' \), put \(A \Rightarrow y_1 \mid y_2 \mid \ldots y_n \in P' \)
Example:

\[
S \rightarrow AB \\
A \rightarrow B \\
B \rightarrow C | Bb \\
C \rightarrow A | c | Da \\
D \rightarrow A
\]

Theorem Let \(L \) be a CFL that does not contain \(\lambda \). Then \(\exists \) a CFG for \(L \) that does not have any useless productions, \(\lambda \)-productions, or unit-productions.

Proof

1. Remove \(\lambda \)-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing \(\lambda \)-productions can create unit-productions! QED.
Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form
\[A \rightarrow BC \quad \text{or} \quad A \rightarrow a \]

where \(A, B, C \in V \) and \(a \in T \).

Theorem: Any CFG \(G \) with \(\lambda \) not in \(L(G) \) has an equivalent grammar in CNF.

Proof:

1. Remove \(\lambda \)-productions, unit productions, and useless productions.
2. For every rhs of length > 1, replace each terminal \(x_i \) by a new variable \(C_j \) and add the production \(C_j \rightarrow x_i \).
3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

\[
\begin{align*}
S & \rightarrow CBcd \\
B & \rightarrow b \\
C & \rightarrow Cc \mid e
\end{align*}
\]
Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

\[A \rightarrow ax \]

where \(a \in T \) and \(x \in V^* \)

Theorem For every CFG \(G \) with \(\lambda \) not in \(L(G) \), \(\exists \) a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables \(A_1, A_2, \ldots A_n \)
3. Eliminate left recursion and use substitution to get all productions into the form:

\[
\begin{align*}
A_i & \rightarrow A_j x_j, \ j > i \\
Z_i & \rightarrow A_j x_j, \ j \leq n \\
A_i & \rightarrow ax_i
\end{align*}
\]

where \(a \in T \), \(x_i \in V^* \), and \(Z_i \) are new variables introduced for left recursion.

4. All productions with \(A_n \) are in the correct form, \(A_n \rightarrow ax_n \). Use these productions as substitutions to get \(A_{n-1} \) productions in the correct form. Repeat with \(A_{n-2}, A_{n-3} \), etc until all productions are in the correct form.