Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines.

1. Given Turing Machines M_1 and M_2

 Notation for
 - Run M_1
 - Run M_2

 \[z \rightarrow z \rightarrow M_1 \rightarrow M_2 \]

 z represents any symbol in Γ

2. Given Turing Machines M_1 and M_2

 Notation for
 - Run M_1
 - If x is current symbol
 - then Run M_2

 \[z \rightarrow z \rightarrow M_1 \rightarrow M_2 \]

 z represents any symbol in Γ

 x is an element of Γ
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose $\Gamma=\{a,b,c,B\}$

- z is any symbol in Γ
- x is a specific symbol from Γ

1. s - start
2. R - move right
3. L - move left

4. x - write x (and don’t move)

5. Rₐ - move right until you see an a

6. Lₐ - move left until you see an a

7. Rₐa - move right until you see anything that is not an a

8. Lₐa - move left until you see anything that is not an a

9. h - halt in a final state

10. \(\frac{a,b}{w} \)

 If the current symbol is a or b, let w represent the current symbol.
Example

Assume input string $w \in \Sigma^+, \Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?
Example
Assume input string \(w \in \Sigma^+, \Sigma = \{a, b\}, |w| > 0 \)

For each \(a \) in the string, append a \(b \) to the end of the string.

input: \(abbabb \), output: \(abbabbbb \)

The tape head should finish pointing at the leftmost symbol of \(w \).

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function \(f:D \rightarrow \mathbb{R} \) is a TM \(M \), which given input \(d \in D \), halts with answer \(f(d) \in \mathbb{R} \).

Example: \(f(x + y) = x + y \), \(x \) and \(y \) unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111+1111 \\
& \uparrow \\
\text{end with:} & \quad 1111111 \\
& \uparrow
\end{align*}
\]
Example: Copy a String, \(f(w) = w0w, w \in \Sigma^*, \Sigma = \{a, b, c\} \)

Denoted by \(C \)

| Start with: \(\text{abac} \) | \(\uparrow \) |
| End with: \(\text{abac0abac} \) | \(\uparrow \) |

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol

\[\begin{array}{c}
\text{s R 0 L}
\end{array} \quad \begin{array}{c}
\text{a,b,c}
\end{array} \quad \begin{array}{c}
w
\end{array} \quad \begin{array}{c}
\text{R}
\end{array} \quad \begin{array}{c}
\text{B}
\end{array} \quad \begin{array}{c}
w
\end{array} \quad \begin{array}{c}
\text{R}
\end{array} \quad \begin{array}{c}
\text{B}
\end{array} \quad \begin{array}{c}
w
\end{array} \quad \begin{array}{c}
\text{L}
\end{array} \quad \begin{array}{c}
\text{B}
\end{array} \quad \begin{array}{c}
\text{R}
\end{array} \quad \begin{array}{c}
h
\end{array} \quad \begin{array}{c}
\text{B}
\end{array} \]
Example: Shift the string that is to the left of the tape head to the right, denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

\[
\begin{align*}
\text{start with: } & \quad \text{aaBbabca} \\
\text{end with: } & \quad \text{aaBBbaca}
\end{align*}
\]

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position
Example: Shift the string that is to the right of tape head to the left, denote by S_L (shift left)

start with: babcaBba

end with: bacaBBba

(similar to S_R)
Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, \(f(x*y) = x*y \), \(x \) and \(y \) unary numbers. Assume \(x, y > 0 \).

\[
\begin{align*}
\text{start with:} & \quad 1111 \uparrow 11 \\
& \quad \uparrow \\
\text{end with:} & \quad 1111111 \\
& \quad \uparrow
\end{align*}
\]