Read Section 12.1.

Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.

The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w? (yes or no)

Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem.
 - TM H has 2 final states, q_y represents yes and q_n represents no.
 - TM H has input the coding of TM M (denoted w_M) and input string w and ends in state q_y (yes) if M halts on w and ends in state q_n (no) if M doesn’t halt on w.

$$H (w_M, w) = \begin{cases}
\text{(yes) halts in } q_y & \text{if } M \text{ halts on } w \\
\text{(no) halts in } q_n & \text{if } M \text{ doesn’t halt on } w
\end{cases}$$

TM H always halts in a final state.

Construct TM H' from H such that H' halts if H ends in state q_n and H' doesn’t halt if H ends in state q_y.

$$H' (w_M, w) = \begin{cases}
\text{halts} & \text{if } M \text{ doesn’t halt on } w \\
\text{doesn’t halt} & \text{if } M \text{ halts on } w
\end{cases}$$
Construct TM \(\hat{H} \) from \(H' \) such that \(\hat{H} \) makes a copy of \(w_M \) and then behaves like \(H' \). (simulates TM \(M \) on the input string that is the encoding of TM \(M \), applies \(M_w \) to \(M_w \)).

So \(\hat{H}(w_M) \) runs \(H'(w_M, w_M) \)

\[
\hat{H}(w_M) = \begin{cases}
\text{halts} & \text{if } M \text{ doesn't halt on } w_M \\
\text{doesn't halt} & \text{if } M \text{ halts on } w_M
\end{cases}
\]

Note that \(\hat{H} \) is a TM.

There is some encoding of it, say \(\hat{w}_{\hat{H}} \).

What happens if we run \(\hat{H} \) with input \(\hat{w}_{\hat{H}} \)?

\textbf{Theorem} If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus, the halting problem is undecidable.

\begin{itemize}
 \item \textbf{Proof:} Let \(L \) be an RE language over \(\Sigma \).

 Let \(M \) be the TM such that \(L=L(M) \).

 Let \(H \) be the TM that solves the halting problem.
\end{itemize}
A problem A is reduced to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable, then A must be undecidable.

State-entry problem Given TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, state $q \in Q$, and string $w \in \Sigma^*$, is state q ever entered when M is applied to w?

This is an undecidable problem!

- **Proof:** We will reduce this problem to the halting problem.

 Suppose we have a TM E to solve the state-entry problem.

 TM E takes as input the coding of a TM M (denoted by w_M), a string w and a state q. TM E answers *yes* if state q is entered and *no* if state q is not entered.

 Construct TM E' which does the following. On input w_M and w E' first examines the transition functions of M. Whenever δ is not defined for some state q_i and symbol a add the transition $\delta(q_i, a) = (q, a, R)$. Let this new state q be the only final state. Let M' be the modified TM. Next, simulate TM E on input w_M', w and q.

\[
E'(w_M, w) = \begin{cases}
 M \text{ halts on } w & \text{if } M' \text{ enters state } q \\
 M \text{ doesn’t halt on } w & \text{if } M' \text{ doesn’t enter state } q
\end{cases}
\]

TM E' determines if M halts on w. If M halts on w then TM E' will enter state q in M' and answer *yes*. If M doesn’t halt on w then TM E' will not enter state q, so it will answer *no*. Since the state-entry problem is decidable, E always gives an answer yes or no.

But the halting problem is undecidable. Contradiction! Thus, the state-entry problem must be undecidable. QED.

There are some more examples of undecidability in section 12.1.