Parsing

 Parsing: Deciding if \(x \in \Sigma^* \) is in \(L(G) \) for some CFG \(G \).

Review

Consider the CFG \(G \):

\[
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA \mid ABa \mid \lambda \\
B & \rightarrow BBa \mid b \mid \lambda
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?

Remove \(\lambda \)-rules, then unit productions, and then useless productions from the grammar \(G \) above. New grammar \(G' \) is:

\[
\begin{align*}
S & \rightarrow Aa \mid a \\
A & \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B & \rightarrow BBa \mid Ba \mid a \mid b
\end{align*}
\]

Is \(ba \) in \(L(G) \)? Running time?

Top-down Parser:

- Start with \(S \) and try to derive the string.

\[
S \rightarrow aS \mid b
\]
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

G=(V,T,S,P)

w,v ∈ (V∪T)*

a ∈ T

X,A,B ∈ V

X_I ∈ (V∪T)^+

Definition: FIRST(w) = the set of terminals that begin strings derived from w.

If w ⇒ av then
a is in FIRST(w)

If w ⇒ λ then
λ is in FIRST(w)

To compute FIRST:

1. FIRST(a) = \{a\}

2. FIRST(X)
 (a) If X → aw then
 a is in FIRST(X)
 (b) If X → λ then
 λ is in FIRST(X)
 (c) If X → Aw and λ ∈ FIRST(A) then
 Everything in FIRST(w) is in FIRST(X)

3. In general, FIRST(X_1X_2X_3..X_K) =
 • FIRST(X_1)
 • ∪ FIRST(X_2) if λ is in FIRST(X_1)
 • ∪ FIRST(X_3) if λ is in FIRST(X_1) and λ is in FIRST(X_2)
 ...
 • ∪ FIRST(X_K) if λ is in FIRST(X_1) and λ is in FIRST(X_2) ...
 and λ is in FIRST(X_{K−1})
 • – {λ} if λ ∉ FIRST(X_J) for all J
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =

Definition: FOLLOW(X) = set of terminals that can appear to the right of X in some derivation.

If \(S \Rightarrow wAav \) then
\[a \text{ is in FOLLOW(A)} \]

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)
To compute FOLLOW:

1. $ \$ $ is in FOLLOW(S)
2. If $ A \rightarrow wBv $ and $ v \neq \lambda $ then
 $ \text{FIRST}(v) - \{\lambda\} $ is in FOLLOW(B)
3. IF $ A \rightarrow wB $ OR
 $ A \rightarrow wBv $ and $ \lambda $ is in FIRST(v) then
 FOLLOW(A) is in FOLLOW(B)
4. $ \lambda $ is never in FOLLOW

Example:

\[
S \rightarrow aSc \mid B \\
B \rightarrow b \mid \lambda
\]

FOLLOW(S) =
FOLLOW(B) =

Example:

\[
S \rightarrow BCD \mid aD \\
A \rightarrow CEB \mid aA \\
B \rightarrow b \mid \lambda \\
C \rightarrow dB \mid \lambda \\
D \rightarrow cA \mid \lambda \\
E \rightarrow e \mid fE
\]

FOLLOW(S) =
FOLLOW(A) =
FOLLOW(B) =
FOLLOW(C) =
FOLLOW(D) =
FOLLOW(E) =