Section: Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Consider the CFG G:

\[
\begin{align*}
S & \rightarrow Aa \\
A & \rightarrow AA \mid ABa \mid \lambda \\
B & \rightarrow BBa \mid b \mid \lambda
\end{align*}
\]

Is ba in $L(G)$? Running time?

New grammar G' is:

\[
\begin{align*}
S & \rightarrow Aa \mid a \\
A & \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B & \rightarrow BBa \mid Ba \mid a \mid b
\end{align*}
\]

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \rightarrow aS \mid b \]

- Examples: LL Parser, Recursive Descent
Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
The function FIRST:

\[G = (V, T, S, P) \]
\[w, v \in (V \cup T)^* \]
\[a \in T \]
\[X, A, B \in V \]
\[X_I \in (V \cup T)^+ \]

Definition: \(\text{FIRST}(w) = \) the set of terminals that begin strings derived from \(w \).

- If \(w \xrightarrow{*} av \) then
 \(a \) is in \(\text{FIRST}(w) \)
- If \(w \xrightarrow{*} \lambda \) then
 \(\lambda \) is in \(\text{FIRST}(w) \)
To compute FIRST:

1. FIRST(a) = \{a\}

2. FIRST(X)

 (a) If X → aw then
 a is in FIRST(X)

 (b) IF X → λ then
 λ is in FIRST(X)

 (c) If X → Aw and λ ∈ FIRST(A) then
 Everything in FIRST(w) is in FIRST(X)
3. In general, FIRST($X_1X_2X_3..X_K$) =

- $\text{FIRST}(X_1)$
- $\cup \text{FIRST}(X_2)$ if λ is in $\text{FIRST}(X_1)$
- $\cup \text{FIRST}(X_3)$ if λ is in $\text{FIRST}(X_1)$ and λ is in $\text{FIRST}(X_2)$
- ...
- $\cup \text{FIRST}(X_K)$ if λ is in $\text{FIRST}(X_1)$ and λ is in $\text{FIRST}(X_2)$...
- and λ is in $\text{FIRST}(X_{K-1})$
- $- \{\lambda\}$ if $\lambda \notin \text{FIRST}(X_J)$ for all J
Example:

\[S \rightarrow aSc \mid B \]
\[B \rightarrow b \mid \lambda \]

\[\text{FIRST}(B) = \]
\[\text{FIRST}(S) = \]
\[\text{FIRST}(Sc) = \]
Example

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FIRST(S) =

FIRST(A) =

FIRST(B) =

FIRST(C) =

FIRST(D) =

FIRST(E) =
Definition: $\text{FOLLOW}(X) = \text{set of terminals that can appear to the right of } X \text{ in some derivation.}$

If $S \Rightarrow^* wAav$ then
\[a \text{ is in } \text{FOLLOW}(A) \]

To compute FOLLOW:

1. $\$ \text{ is in } \text{FOLLOW}(S)$
2. If $A \rightarrow wBv$ and $v \neq \lambda$ then
 $\text{FIRST}(v) - \{\lambda\}$ is in $\text{FOLLOW}(B)$
3. IF $A \rightarrow wB$ OR
 $A \rightarrow wBv$ and λ is in $\text{FIRST}(v)$
 then
 $\text{FOLLOW}(A)$ is in $\text{FOLLOW}(B)$
4. λ is never in FOLLOW
Example:

\[
S \to aSc \mid B \\
B \to b \mid \lambda
\]

FOLLOW(S) =

FOLLOW(B) =
Example:

\[S \rightarrow BCD \mid aD \]
\[A \rightarrow CEB \mid aA \]
\[B \rightarrow b \mid \lambda \]
\[C \rightarrow dB \mid \lambda \]
\[D \rightarrow cA \mid \lambda \]
\[E \rightarrow e \mid fE \]

FOLLOW(S) =

FOLLOW(A) =

FOLLOW(B) =

FOLLOW(C) =

FOLLOW(D) =

FOLLOW(E) =