Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

where
Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

M = (Q, Σ, δ, q₀, F) =

Tabular Format

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>q₁</td>
<td>q₀</td>
</tr>
<tr>
<td>q₁</td>
<td>q₁</td>
<td>q₀</td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q, s)
 s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

1) 1 0 0
 q0 q1
2) 1 0 0
 q0 q1
3) 1 0 0
 q0 q1
4) 1 0 0
 q0 q1

Definition:

δ*(q, λ) = q
δ*(q, wa) = δ(δ*(q, w), a)

Definition The language accepted by a DFA M = (Q, Σ, δ, q0, F) is set of all strings on Σ accepted by M. Formally,

L(M) = \{ w ∈ Σ* | δ*(q0, w) ∈ F \}
Trap State

Example: \(\operatorname{L(M)} = \{b^n a \mid n > 0\} \)

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Example:

\[L = \{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\} \]

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = \operatorname{L(M)} \).
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA=(Q,Σ,δ,q₀,F)

where

Q is finite set of states
Σ is tape (input) alphabet
q₀ is initial state
F ⊆ Q is set of final states.
δ:Q×(Σ∪{λ})→2^Q

Example

Note: In this example δ(q₀,a) =

Example

L={a^n b^n | n > 0} ∪ {a^n b | n > 0}

Definition q_j ∈ δ*(q_i, w) if and only if there is a walk from q_i to q_j labeled w.

Example From previous example:

δ*(q₀,ab)=

δ*(q₀,aba)=

Definition: For an NFA M, L(M)= {w ∈ Σ* | δ*(q₀, w) ∩ F ≠ ∅}

The language accepted by nfa M is all strings w such that there exists a walk labeled w from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

![NFA DFA Diagram]

Theorem Given an NFA $M_N= (Q_N, \Sigma, \delta_N, q_0, F_N)$, then there exists a DFA $M_D = (Q_D, \Sigma, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D =$

$F_D =$

$\delta_D :$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$
2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a
3. Identify final states
4. if $\lambda \in L(M_N)$ then make the start state final.
Example:

\[\begin{array}{cccccc}
q_0 & q_1 & q_3 & q_5 \\
\lambda & a & \lambda & b \\
\lambda & a & \lambda & b \\
\end{array} \]

Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states \(p \) and \(q \) are indistinguishable if for all \(w \in \Sigma^* \)

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \not\in F \Rightarrow \delta^*(q, w) \not\in F
\]

Definition Two states \(p \) and \(q \) are distinguishable if \(\exists w \in \Sigma^* \) s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \not\in F \text{ OR} \\
\delta^*(q, w) \not\in F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Consider the property Truncate_all_preceeding_b's or TruncPreb for short. If L is a regular, prove $\text{TruncPreb}(L)$ is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in $\text{TruncPreb}(L)$.