Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $L(M) = L(M')$.

- **Proof** (sketch)
 $M= (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 Construct $M'= (Q', \Sigma, \Gamma', \delta', q_s, z', F')$

Theorem Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

- **Proof**: (sketch)
 $M= (Q, \Sigma, \Gamma, \delta, q_0, z, F)$
 Construct $M'= (Q', \Sigma, \Gamma', \delta', q_s, z', F')$
Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $L=L(M)$.

- **Proof** (sketch)

 Given (λ-free) CFL L.

 $\Rightarrow \exists$ CFG G such that $L=L(G)$.

 $\Rightarrow \exists$ G' in GNF, s.t. $L(G)=L(G')$.

 $G'=(V,T,S,P)$. All productions in P are of the form:

 - $S \rightarrow aSA \mid aAA \mid b$
 - $A \rightarrow bBBB$
 - $B \rightarrow b$

Example: Let $G'=(V,T,S,P)$, $P=$
Theorem Given a NPDA M, ∃ a NPDA M’ s.t. all transitions have the form \(\delta(q_i,a,A) = \{c_1, c_2, \ldots, c_n\} \) where

\[
\begin{align*}
c_i &= (q_j, \lambda) \\
or \quad c_i &= (q_j, BC)
\end{align*}
\]

Each move either increases or decreases stack contents by a single symbol.

- **Proof** (sketch)
Theorem If $L = L(M)$ for some NPDA M, then L is a CFL.

- **Proof:** Given NPDA M.
 First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

 1. accepts if stack is empty
 2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)

 $M' = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$

 Construct $G = (V, \Sigma, S, P)$ where

 $V = \{ (q_i, c)q_j | q_i, q_j \in Q, c \in \Gamma \}$

 $(q_i, c)q_j$ represents “starting at state q_i the stack contents are cw, $w \in \Gamma^*$, some path is followed to state q_j and the contents of the stack are now w”.

 Goal: (q_0zq_f) which will be the start symbol in the grammar.

 Meaning: We start in state q_0 with z on the stack and process the input tape. Eventually we will reach the final state q_f and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).
Example:

$L(M) = \{aa^*b\}$, $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$, $Q = \{q_0, q_1, q_2, q_3\}$, $\Sigma = \{a, b\}$, $\Gamma = \{A, z\}$, $F = \{\}$. M accepts by empty stack.

Construct the grammar $G = (V, T, S, P)$,

$V = \{(q_0Aq_0), (q_0zq_0), (q_0Aq_1), (q_0zq_1), \ldots\}$

$T = \Sigma$

$S = (q_0zq_2)$
Derivation of string aaab in G:

\[P = \begin{align*}
& \text{From transition 1 } (q_0 A q_1) \rightarrow b \\
& \text{From transition 2 } (q_1 z q_2) \rightarrow \lambda \\
& \text{From transition 3 } (q_0 A q_3) \rightarrow a \\
& \text{From transition 4 } (q_0 z q_0) \rightarrow a(q_0 A q_0)(q_0 z q_0) \\
& \quad \quad \quad \quad \quad a(q_0 A q_1)(q_1 z q_0) \\
& \quad \quad \quad \quad \quad a(q_0 A q_2)(q_2 z q_0) \\
& \quad \quad \quad \quad \quad a(q_0 A q_3)(q_3 z q_0) \\
& \text{From transition 5 } (q_3 z q_0) \rightarrow (q_0 A q_0)(q_0 z q_0) \\
& \quad \quad \quad \quad \quad (q_0 A q_1)(q_1 z q_0) \\
& \quad \quad \quad \quad \quad (q_0 A q_2)(q_2 z q_0) \\
& \text{Recognizing aaab in M:} \\
& (q_0, aaab, z) \vdash (q_0, aab, Az) \\
& \vdash (q_1, b, z) \\
& \vdash (q_2, \lambda, Az) \\
& \vdash (q_2, \lambda, \lambda) \\
& \text{Derivation of string aaab in G:} \\
& (q_0 z q_2) \Rightarrow a(q_0 A q_3)(q_3 z q_2) \\
& \Rightarrow aa(q_3 z q_2) \\
& \Rightarrow aa(a(q_0 A q_3)(q_3 z q_2)) \\
& \Rightarrow aaa(q_3 z q_2) \\
& \Rightarrow aaa(a(q_0 A q_1)(q_1 z q_2)) \\
& \Rightarrow aaab(q_1 z q_2) \\
& \Rightarrow aaab
\end{align*}\]
Chapter 7.3

Definition: A PDA $M=(Q, \Sigma, \Gamma, \delta, q_0, z, F)$ is deterministic if for every $q \in Q$, $a \in \Sigma \cup \{\lambda\}$, $b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b) = \emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $L = L(M)$.

Examples:
1. Previous pda for $\{a^n b^n | n \geq 0\}$ is deterministic.
2. Previous pda for $\{a^n b^m c^n + m | n, m > 0\}$ is deterministic.
3. Previous pda for $\{ww^R | w \in \Sigma^+\}, \Sigma = \{a, b\}$ is nondeterministic.

Note: There are CFL’s that are not deterministic.

$L = \{a^n b^n | n \geq 1\} \cup \{a^n b^{2n} | n \geq 1\}$ is a CFL and not a DCFL.

- **Proof:** $L = \{a^n b^n : n \geq 1\} \cup \{a^n b^{2n} : n \geq 1\}$

 It is easy to construct a NPDA for $\{a^n b^n : n \geq 1\}$ and a NPDA for $\{a^n b^{2n} : n \geq 1\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.

 Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L = L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.

 Construct a PDA M' as follows:

 1. Create two copies of M: M_1 and M_2. The same state in M_1 and M_2 are called cousins.
 2. Remove accept status from accept states in M_1, remove initial status from initial state in M_2. In our new PDA, we will start in M_1 and accept in M_2.
 3. Outgoing arcs from old accept states in M_1, change to end up in the cousin of its destination in M_2. This joins M_1 and M_2 into one PDA. There must be an outgoing arc since you must recognize both $a^n b^n$ and $a^n b^{2n}$. After reading n b’s, must accept if no more b’s and continue if there are more b’s.
 4. Modify all transitions that read a b and have their destinations in M_2 to read a c.

 This is the construction of our new PDA.

 When we read $a^n b^n$ and end up in an old accept state in M_1, then we will transfer to M_2 and read the rest of $a^n b^{2n}$. Only the b’s in M_2 have been replaced by c’s, so the new machine accepts $a^n b^n c^n$. The language accepted by our new PDA is $a^n b^n c^n$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M) = L$. Q.E.D.