Review

Regular Languages

- FA, RG, RE
- recognize

Context Free Languages

- PDA, CFG
- recognize

DFA:

Turing Machine:
Turing Machine (TM)

- invented by Alan M. Turing (1936)
- computational model to study algorithms

Definition of TM

- Storage
 - tape

- actions
 - write symbol
 - read symbol
 - move left (L) or right (R)

- computation
 - initial configuration
 * start state
 * tape head on leftmost tape square
 * input string followed by blanks
 - processing computation
 * move tape head left or right
 * read from and write to tape
 - computation halts
 * final state

Formal Definition of TM

A TM M is defined by $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ where

- Q is finite set of states
- Σ is input alphabet
- Γ is tape alphabet
- $B \in \Gamma$ is blank
- q_0 is start state
- F is set of final states
- δ is transition function

 $\delta(q,a) = (p,b,R)$ means “if in state q with the tape head pointing to an ’a’, then move into state p, write a ’b’ on the tape and move to the right”.

2
TM as Language recognizer

Definition: Configuration is denoted by ⊢.

if δ(q,a) = (p,b,R) then a move is denoted

abaqabba ⊢ ababpbba

Definition: Let M be a TM, M=(Q,Σ,Γ,δ,q0,B,F). L(M) = \{ w ∈ Σ∗ | q0 w ⊢ x_1 q_f x_2 for some q_f ∈ F, x_1, x_2 ∈ Γ∗ \}

TM as language acceptor

M is a TM, w is in Σ∗,

- if w ∈ L(M) then M halts in final state
- if w ∉ L(M) then either
 - M halts in non-final state
 - M doesn’t halt

Example

Σ = \{a, b\}

Replace every second ‘a’ by a ‘b’ if string is even length.

- Algorithm
Example:

\[L = \{ a^n b^n c^n | n \geq 1 \} \]

Is the following TM Correct?

\[\text{TM as a transducer} \]

TM can implement a function: \(f(w) = w' \)

\[
\begin{align*}
\text{start with:} & \quad w \\
\text{end with:} & \quad w'
\end{align*}
\]
Definition: A function with domain D is *Turing-computable* or *computable* if there exists TM $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ such that

$$q_0 w \stackrel{*}{\vdash} q_f f(w)$$

$q_f \in F$, for all $w \in D$.

Example:

$f(x) = 2x$

x is a unary number

```
start with:       111
↑
end with:        111111
↑
```

Is the following TM correct?

![Diagram of TM](image_url)
Example:

$L = \{ww \mid w \in \Sigma^+ \}, \Sigma = \{a, b\}$