Overview of the previous lecture: A language is a decision problem. DNF is the language of satisfiable formulas in Disjunctive Normal Form. Thus formulas $\phi(x_1, \ldots, x_n)$ in DNF are of the form

$$\phi(x_1, \ldots, x_n) = \bigvee_{i=1}^{k} \left(\bigwedge_{j=1}^{r_i} l_{ij} \right)$$

where every l_{ij} is one of $x_1, \ldots, x_n, \overline{x}_1, \ldots, \overline{x}_n$, where the x_is are Boolean variables. Note that the computational complexity of satisfiability for DNF is trivial. This is because unless all the individual conjunctive clauses are individually non-satisfiable (which occurs for clause C_i if it contains both x_j and \overline{x}_j for some j), one can select values for the x_i's such that at least one clause evaluates to 1. However, the problem of determining the existence of $\{x_i\}_{i=1}^{n}$ such that $\phi(x_1, \ldots, x_n) = 0$ is difficult.

This is the complement of the Conjunctive Normal Form (CNF), where the satisfiability problem is difficult, but determining the existence of $\{x_i\}_{i=1}^{n}$ such that $\phi(x_1, \ldots, x_n) = 0$ is trivial. DNF and CNF can be related to each other by DeMorgan’s identities.

The function $\#DNF : \phi \to \mathbb{N}$ is defined for formulas ϕ in DNF to be the number of inputs $x = \{x_i\}_{i=1}^{n}$ satisfying ϕ.

$\#DNF \in \#P$, where $\#P$ is the set of functions $\{0,1\}^n \to \mathbb{N}$ which give the number of satisfying leaves in the tree of a nondeterministic poly-time Turing machine. $\#DNF$ can be shown to be $\#P$-complete with respect to deterministic poly-time reductions.

Additive vs. Multiplicative Approximation

Let θ be the fraction of assignments satisfying ϕ. Therefore $\theta = |\{x : \phi(x) = 1\}| / 2^n = \#DNF(\phi) / 2^n$.

An additive approximation T satisfies $|T - \theta| < \epsilon$.

A multiplicative approximation T satisfies $\theta(1 - \epsilon) < T < \theta(1 + \epsilon)$.

Note that a multiplicative approximation implies an additive approximation, but not vice versa.

Eg: Let $\phi(x) = (x_1 \land \ldots \land x_{n/3}) \lor (x_{n/3+1} \land \ldots \land x_{2n/3}) \lor (x_{2n/3+1} \land \ldots \land x_n)$. Then $\theta \approx 2^{-n/3}$. An additive approximation of no more than $1/poly(n)$ is useless as a multiplicative approximation.

Approximation algorithm (Karp, Luby and Madras)

(This will later be useful for network reliability problems, in particular the probability that a network remains connected when links undergo failure with some probability).

Let $\phi = C_1 \lor C_2 \lor \ldots \lor C_k$, where the C_i's are the clauses. For an assignment τ of x, let $\mu(\tau)$ be the number of clauses that τ satisfies. Let r_i be the number of literals in clause C_i. Define $q = \sum_i 2^{-r_i}$. If k is the number of clauses, then $\theta \leq q \leq k \theta$.

Algorithm:-

1. Choose a clause C_i with probability $2^{-r_i} / q$.

2. Uniformly and randomly, choose τ satisfying C_i.

3. Let T, our estimator of θ, be $T = q / \mu(\tau)$
Claim: T is an unbiased estimator of θ. (That is, $E(T) = \theta$.)
Proof: Examine the following set of equalities.

\[
E \left(\frac{q}{\mu(\tau)} \right) = \sum_i \frac{2^{-r_i}}{q} E \left(\frac{q}{\mu(\tau)} \mid \text{pick } C_i \right)
\]
\[
= \sum_i \frac{2^{-r_i}}{q} \sum_{\tau : C_i(\tau) = 1} 2^{r_i - n} \frac{q}{\mu(\tau)}
\]
\[
= \sum_i \sum_{\tau : C_i(\tau) = 1} 2^{-n} \frac{q}{\mu(\tau)}
\]
\[
= 2^{-n} \sum_{\tau : \phi(\tau) = 1} \frac{q}{\mu(\tau)} \sum_{\tau : C_i(\tau) = 1} 1
\]
\[
= 2^{-n} \sum_{\tau : \phi(\tau) = 1} 1
\]
\[
= \theta.
\]

Note that even though the estimator obtained by sampling τ uniformly and checking for satisfiability is unbiased, the variance is huge. The estimator T obtained above, however, doesn’t suffer from this problem, as shown below.

Variance of T:

\[
Var(T) = E(T - \theta)^2 = E(T^2) - \theta^2
\]

But

\[
E(T^2) = \sum_i \frac{2^{-r_i}}{q} \sum_{\tau : C_i(\tau) = 1} 2^{r_i - n} \frac{q^2}{\mu^2(\tau)}
\]
\[
= 2^{-n} q \sum_i \sum_{\tau : C_i(\tau) = 1} \frac{1}{\mu(\tau)}
\]
\[
= 2^{-n} q \sum_{\tau : \phi(\tau) = 1} \frac{1}{\mu(\tau)}
\]

(1)

Let $r = \min_i r_i$, therefore $\theta \geq 2^{-r}$. By the union bound, $\theta \leq k2^{-r}$, therefore $q \leq k2^{-r}$, which implies that

\[
q \leq k\theta.
\]

(2)

Also, since $\mu(\tau) \geq 1$, therefore

\[
\sum_{\tau : \phi(\tau) = 1} \frac{1}{\mu(\tau)} \leq 2^{-n} \theta
\]

(3)

Substituting (2) and (3) in (1) gives us that $E(T^2) \leq k\theta^2$, and therefore

\[
Var(T) \leq (k - 1)\theta^2.
\]

(4)

Amplification:
The resulting variance is reduced in two steps, the second of which is shown in the next lecture.

1. Repeat the K-L-M procedure $\frac{k-1}{\epsilon^2 \delta^2}$ times to get estimates $T_1, \ldots, T_{k-1/\epsilon^2 \delta}$ of θ. Evaluate $\bar{T} = \text{avg}(T_i)$. Since the T_i are independent real random variables, therefore $\text{Var}(\bar{T}) = \frac{\epsilon^2 \delta^2}{k-1} \text{Var}(T_i) = \frac{\epsilon^2 \delta^2}{k-1} (k - 1)\theta^2 = \epsilon^2 \delta \theta^2$.

Interlude:
Markov Inequality
If A is a non-negative random variable, then $\Pr(A \geq \epsilon) \leq \frac{E(A)}{\epsilon}$. This is because $E(A) = E(A|A < \epsilon) \Pr(A < \epsilon) + E(A|A \geq \epsilon) \Pr(A \geq \epsilon) \geq E(A|A \geq \epsilon) \Pr(A \geq \epsilon) \geq \epsilon \Pr(A \geq \epsilon)$.

Chebyshev Inequality

If $E(T) = \theta$, then $\Pr(|T - \theta| \geq c\sqrt{\text{Var}(T)}) \leq \frac{1}{c^2}$.

Proof: Apply Markov inequality to the random variable $(T - \theta)^2$.

Consequence for amplification of the algorithm:

For \tilde{T} given above and $\theta = 2^{-n}\#\text{DNF}(\phi)$, $P(|\tilde{T} - \theta| \geq \epsilon \theta) \leq \delta$.

Next time we’ll do another amplification step and show how the K-L-M algorithm gives a “fully polynomial randomised approximation scheme” (FPRAS) for #DNF.