
Compilers, Linkers, Loaders

Computer Science 104

2 © Alvin R. Lebeck CPS 104

•  Homework #2 Due Today
 Extra credit is on Blackboard

•  Midterm: Monday Feb 16 in class
 Covers up through today’s lecture
 Open book/notes
 Review session Friday

•  Friday: finish ASM programming on DE2 boards
•  Reading

 Compilers, linking & loading 2.12
Next week
•  Logic Design
•  Reading Appendix C.1-C.3, C.5

 Administrivia

3 © Alvin R. Lebeck CPS 104

Compilers, Linkers, Loaders
C Program

Compiler

Assembly Language Program

Assembler

Linker

Loader

Object: Machine Language module
Object: Library routine (machine language)

Executable: Machine Language Program (a.out, .exe)

Memory

4 © Alvin R. Lebeck CPS 104

Compiler

Front End

High-Level Optimization

Global Optimization

Code Generator

Scan, Parse (syntax), Type Checking,
Generate Intermediate Representation

Loop transforms, Procedure inline

Global and local optimizations,
Register allocation

Detailed instruction selection,
assembly

5 © Alvin R. Lebeck CPS 104

Compilers

•  Basic block = sequence of
 instructions with a single
 entry point and a single exit
 point
  First instruction is target of

 branch or jump or first
 instruction after branch or jump

  Last instruction is branch or
 jump

•  Connect basic blocks to form
 control flow graph

•  Local optimizations are
 within a basic block

•  Global optimizations are
 across basic block

la $t0, array
li $t1, 0

lw $t2, 0($t0)
beq $t2, $r0, done

addi $t2, $t2, 10
sw $t2, 0($t0)
addi $t1, $t1, 4
b loop

la $t0, list
lw $t0, 0(list)
Beq $t0, $r0, empty

6 © Alvin R. Lebeck CPS 104

Compiler Optimizations

•  Common subexpression elimination
 Array index address computation

•  Strength reduction
 Replace complex operations with simpler ops

•  Constant Propagation
 int x = 200; … y = x + 40; z = y – 10;

•  Copy Propagation
•  Dead Store (code) elimination

 Stores whose values are never used again
 Code that is never executed

7 © Alvin R. Lebeck CPS 104

Global Optimizations

•  Occur across basic blocks
•  In addition to the previous set
•  Code Motion

 Find code that is loop invariant and move it before loop
 Computes the same value every iteration

•  Induction variable elimination
 Iterate over array using index k
 Could compute address using array_start plus offset (k * 4)
 Use pointer based approach where you can just increment address

 by 4

8 © Alvin R. Lebeck CPS 104

Register Allocation

•  Compiler first generates an intermediate
 representation (IR)
 Virtual registers (unlimited number of them…)

•  Must map from virtual registers to real set of registers
•  Goal is to reduce the number of loads & stores
•  If not enough registers, must “spill” = save to stack

 and restore from stack
•  Sophisticated algorithms, reduces to graph coloring

 Given graph, color each node such that no two adjacent nodes have
 the same color

 Color = register number

9 © Alvin R. Lebeck CPS 104

Linker
C Program

Compiler

Assembly Language Program

Assembler

Linker

Loader

Object: Machine Language module
Object: Library routine (machine language)

Executable: Machine Language Program (a.out)

Memory

We are here

10 © Alvin R. Lebeck CPS 104

Linker

•  Ability to resolve labels across multiple files
•  Compiler creates one object file per source file
•  Includes symbol table that identifies labels within a

 file and any instructions that need to be “fixed”
•  Linker fills in values when they become known
•  Static linking, all objects are linked to create

 executable file
•  Dynamic linking, (DLL), occurs during execution

 Jump table

11 © Alvin R. Lebeck CPS 104

Loader: starting execution

•  Part of Operating System that reads executable file
 off disk and starts execution

•  Executable file has header information that identifies
 size of text and data in (ELF, COFF)

•  Works with OS to establish address space
 That ideal view of memory being 232 bytes large

•  Copies arguments into registers and stack
•  Points PC to first instruction of startup code (which

 calls main)
 On return from main, this “startup” code executes an exit system

 call

12 © Alvin R. Lebeck CPS 104

Virtual Functions

•  A little NiosII IDE and gnutools demo….

13 © Alvin R. Lebeck CPS 104

Summary

•  Procedure calls
•  Compilers, linkers, loaders
Next Time
•  Midterm Monday
Reading
•  Start Appendix C -- logic design

