
Basics of Logic Design:  
Boolean Algebra, Logic Gates 

Computer Science 104 
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•  Projects (groups of 2 or 3) 
Outline 
•  Building the building blocks… 
•  Logic Design 

 Truth tables, Boolean functions, Gates and Circuits 

Reading 
 Appendix C (link off course web page/documents) 

http://arch.cs.duke.edu/local/COD4ED/resources/Appendix/Appendix-C-P374493.pdf 

Today’s Lecture 



3 © Alvin R. Lebeck CPS 104 

The Big Picture 

Control 

Datapath 

Memory 

Processor/CPU 
Input 

Output 

•  The Five Classic Components of a Computer  
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What We’ve Done, Where We’re Going 

I/O system CPU 

Compiler 

Operating 
System 

Application 

Digital Design 
Circuit Design 

Instruction Set 
Architecture,
 Memory, I/O 

Firmware 

Memory 

Software 

Hardware 

Interface Between 
HW and SW 

Top Down 

Bottom UP to CPU 
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Digital Design 

•  Logic Design, Switching Circuits, Digital Logic  
Recall: Everything is built from transistors 
•  A transistor is a switch 
•  It is either on or off 
•  On or off can represent True or False 
Given a bunch of bits (0 or 1)… 
•  Is this instruction a lw or a beq? 
•  What register do I read? 
•  How do I add two numbers? 
•  Need a method to reason about complex expressions 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 

Boolean Algebra 

•  Boolean functions have arguments that take two
 values ({T,F} or {1,0}) and they return a single or a
 set of ({T,F} or {1,0}) value(s). 

•  Boolean functions can always be represented by a
 table called a “Truth Table” 

•  Example:     F: {0,1}3 -> {0,1}2  
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a  NOT(a) 
0    1 
1    0 

a  b  AND(a,b) 
0  0     0 
0  1     0 
1  0     0 
1  1     1 

a  b  OR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     1 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

a  b  XNOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     1 

a  b  NOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     0 

Boolean Functions 

•  Example Boolean Functions: NOT, AND, OR, XOR, . . .  
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Boolean Functions and Expressions 

•  Boolean algebra notation: Use * for AND, + for OR,  ~
 for NOT. 
 NOT is also written as A’ and A 

•  Using the above notation we can write Boolean
 expressions for functions 

   F(A, B, C) = (A * B) + (~A * C) 

•  We can evaluate the Boolean expression with all
 possible argument values to construct a truth table. 

•  What is truth table for F? 
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Boolean Function Simplification 

•  Boolean expressions can be simplified by using the
 following rules (bitwise logical): 
 A*A = A 
 A* 0 = 0 
 A*1 = A 
 A*~A = 0 

 A+A = A 
 A+0 = A 
 A+1 = 1 
 A+~A = 1 

 A*B = B*A 
 A*(B+C) =  (B+C)*A = A*B + A*C 
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Boolean Function Simplification 

a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  0 0 
0 1 1  1 0 
1 0 0  0 0 
1 0 1  1 0 
1 1 0  0 1 
1 1 1  1 1 

f1 = ~a*~b*c + ~a*b*c + a*~b*c + a*b*c 

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c 

Simplify these functions... 
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a  b  XNOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     1 

XNOR = (~a * ~b) + (a * b) 

Boolean Functions and Expressions 

•  The Fundamental Theorem of Boolean Algebra: 
Every Boolean function can be written in disjunctive
 normal form as an OR of ANDs (Sum-of products) of
 it’s arguments or their complements. 

“Proof:” Write the truth table, construct sum-of
-product from the table. 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 

f1 = ~a*~b*c + ~a*b*~c + a*~b*~c + a*b*c 

f2 = ~a*~b*~c + ~a*~b*c + a*b*~c + a*b*c 

Boolean Functions and Expressions 

•  Example-2: 
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Applying the Theory 

•  Lots of good theory 
•  Can reason about complex boolean expressions 
•  Now we have to make it real… 
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a 
b 

AND(a,b) a 
b 

OR(a,b) 

XOR(a,b) a 
b 

NAND(a,b) a 
b 

a 
b 

NOR(a,b) XNOR(a,b) a 
b 

a NOT(a) 

Boolean Gates  

•  Gates are electronic devices that implement simple
 Boolean functions 

Examples 
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Reality Check 

•  Basic 1 or 2 Input Boolean Gate 1- 4 Transistors 

Pentium III  
•  Processor Core 9.5 Million Transistors 
•  Total: 28 Million Transistors 
Pentium 4 
•  Total: 42 Million Transistors 
Core2 Duo (two processors) 
•  Total: 290 Million Transistors 
Core2 Duo Extreme (4 processors, 8MB cache) 
•  Total: 590 Million Transistors 
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F = ~a*b + ~b*a 

a 

b F 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

Boolean Functions, Gates  and Circuits 

•  Circuits are made from a network of gates. (function
 compositions). 

XOR(a,b) a 
b 
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Digital Design Examples 

Input: 2 bits representing an unsigned number (n) 
Output: n2 as 4-bit unsigned binary number 

Input: 2 bits representing an unsigned number (n) 
Output: 3-n as unsigned binary number 
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Design Example 

•  Consider machine with 4 registers 
•  Given 2-bit input (register specifier, I1, I0) 
•  Want one of 4 output bits (O3-O0) to be 1   

 E.g., allows a single register to be accessed 

•  What is the circuit for this? 
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More Design Examples 

•  X is a 3-bit quantity 
1.  Write a logic function that is true if and only if X contains at

 least two 1s.  

2.  Implement the logic function from problem 1. using only AND,
 OR and NOT gates. (Note there are no constraints on the
 number of gate inputs.)  By implement, I mean draw the circuit
 diagram. 

3.  Write a logic function that is true if and only if X, when
 interpreted as an unsigned binary number, is greater than the
 number 4.  

4.  Implement the logic function from problem 3. using only AND,
 OR and NOT gates. (Note there are no constraints on the
 number of gate inputs.) 
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Parity Example 

•  The parity code of a binary word counts the number
 of ones in a word. If there are an even number of
 ones the parity code is 0, if there are an odd number
 of ones the parity code is 1. For example, the parity
 of 0101 is 0, and the parity of 1101 is 1.  

•  Construct the truth table for a function that
 computes the parity of a four-bit word. Implement
 this function using AND, OR and NOT gates. (Note
 there are no constraints on the number of gate
 inputs.) 
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Circuit Example: Decoder 

I1  I0   Q0 Q1 Q2 Q3 

0  0    1   0   0   0 

0  1    0   1   0   0 

1  0    0   0   1   0 

1  1    0   0   0   1 
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s 

a 
b 

y 

Y = (A * S) + (B * ~S) 

B 

A 

S 

Gate 3 

Gate 2 

Gate 1 

Circuit Example: 2x1  MUX 

MUX(A, B, S) = (A * S) + (B * ~S) 

Multiplexor (MUX)  selects from one of many inputs 
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Example 4x1 MUX 

0 

1 

2 

3 a 

b 

c 

d 

y 

S 

2 

a 
b 

c 
d 

y 

s0 s1 
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Arithmetic and Logical Operations in ISA 

•  What operations are there? 
•  How do we implement them? 

 Consider a 1-bit Adder 
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Summary 

•  Boolean Algebra & functions 
•  Logic gates (AND, OR, NOT, etc) 
•  Multiplexors 
Reading 
•  Appendix C 


