
Basics of Logic Design 
Arithmetic Logic Unit (ALU) 

Computer Science 104 
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•  Homework #3 Assigned Due Mar 4 
•  Project: form groups of 3 (preferred) by Mar 6, I will

 assign after that 
•  Project Specifications on Web, Due April 17 (written

 document and demonstration) 
•  Building the building blocks… 
Outline 
•  Review 
•  Digital building blocks 
•  An Arithmetic Logic Unit (ALU) 
Reading 

 Appendix C, Chapter 3 

Today’s Lecture 
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Review: Digital Design 

•  Logic Design, Switching Circuits, Digital Logic  
Recall: Everything is built from transistors 
•  A transistor is a switch 
•  It is either on or off 
•  On or off can represent True or False 
Given a bunch of bits (0 or 1)… 
•  Is this instruction a lw or a beq? 
•  What register do I read? 
•  How do I add two numbers? 
•  Need a method to reason about complex expressions 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 

Review: Boolean Functions 

•  Boolean functions have arguments that take two
 values ({T,F} or {0,1}) and they return a single or a
 set of ({T,F} or {0,1}) value(s). 

•  Boolean functions can always be represented by a
 table called a “Truth Table” 

•  Example:     F: {0,1}3 -> {0,1}2  
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F(A, B, C) = (A * B) + (~A * C) 

A  B  C  F 
0  0  0  0 
0  0  1  1 
0  1  0  0 
0  1  1  1 
1  0  0  0 
1  0  1  0 
1  1  0  1 
1  1  1  1 

Review: Boolean Functions and Expressions 
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a 
b 

AND(a,b) a 
b 

OR(a,b) 

XOR(a,b) a 
b 

NAND(a,b) a 
b 

a 
b 

NOR(a,b) XNOR(a,b) a 
b 

a NOT(a) 

Review: Boolean Gates  

•  Gates are electronics devices that implement simple
 Boolean functions 

Examples 
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F = ~a*b + ~b*a 

a 

b F 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

Review: Boolean Functions, Gates  and Circuits 

•  Circuits are made from a network of gates. (function
 compositions). 

XOR(a,b) a 
b 
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Parity Example 

•  The parity code of a binary word counts the number
 of ones in a word. If there are an even number of
 ones the parity code is 0, if there are an odd number
 of ones the parity code is 1. For example, the parity
 of 0101 is 0, and the parity of 1101 is 1.  

•  Construct the truth table for a function that
 computes the parity of a four-bit word. Implement
 this function using AND, OR and NOT gates. (Note
 there are no constraints on the number of gate
 inputs.) 
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Circuit Example: Decoder 

I1  I0   Q0 Q1 Q2 Q3 

0  0    1   0   0   0 

0  1    0   1   0   0 

1  0    0   0   1   0 

1  1    0   0   0   1 
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s 

a 
b 

y 

Y = (A * S) + (B * ~S) 

B 

A 

S 

Gate 3 

Gate 2 

Gate 1 

Circuit Example: 2x1  MUX 

MUX(A, B, S) = (A * S) + (B * ~S) 

Multiplexor (MUX)  selects one of many inputs 
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Example 4x1 MUX 

0 

1 

2 

3 a 

b 

c 

d 

y 

S 

2 

a 
b 

c 
d 

y 

s0 s1 

0 

1 

0 

1 
0 

1 
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Arithmetic and Logical Operations in ISA 

•  What operations are there? 
•  Arithmetic Logic Unit (ALU) 

 Hardware that performs operations 
 Only one operation at a time 

•  How do we implement the operations? 
 Consider AND, OR, NOT, and ADD 
 Input is two bits, output… 
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Truth Table for 1-bit Addition 

a  b  Cin  Sum  Cout 
0  0  0    0    0 
0  0  1    1    0 
0  1  0    1    0 
0  1  1    0    1 
1  0  0    1    0 
1  0  1    0    1 
1  1  0    0    1 
1  1  1    1    1 

What is the circuit for Sum and for Cout? 

01101100 

 01101101 
+00101100 
 10011001 
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A 1-bit Full Adder 

a  b  Cin  Sum  Cout 
0  0  0    0    0 
0  0  1    1    0 
0  1  0    1    0 
0  1  1    0    1 
1  0  0    1    0 
1  0  1    0    1 
1  1  0    0    1 
1  1  1    1    1 

01101100 

 01101101 
+00101100 
 10011001 

a 

b 

Cin 

Cout 

Sum 
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b0 b1 b2 b3 a0 a1 a2 a3 

Cout 

S0 S1 S2 S3 

Example: 4-bit adder 

Cin “0” Full Adder Full Adder Full Adder Full Adder 
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Adder 

C in 

C ou t 

F 

2 
0 

1 

2 

3 

a 

b 

Q 

  F         Q 
  0        a + b 
  1      NOT b 
  2      a OR b 
  3      a AND b 

ALU Slice (Almost) 
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Subtraction 

•  How do we perform integer subtraction? 
•  What is the HW? 
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ALU Slice 

A      F         Q 
0      0        a + b 
1      0        a - b 
-       1      NOT b 
-       2      a OR b 
-       3      a AND b 

Adder 

C in 

C ou t 

F 

2 
0 

1 

2 

3 
a 

b 

Q 

0 
1 

~Add/Sub 
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Overflow 
Example1: 
0100000 

 01101012 (= 5310) 
+01010102 (= 4210) 
 10111112 (=-3310) 

Example2: 
1000000 

 10101012 (=-4310) 
+10010102 (=-5410) 
 00111112 (= 3110) 

Example3: 
1100000 

 01101012 (= 5310) 
+11010102 (=-2210) 
 00111112 (= 3110) 

Example4: 
0000000 

 00101012 (= 2110) 
+01010102 (= 4210) 
 01111112 (= 6310) 
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Overflow Detection for 4-bit adder 

b0 b1 b2 b3 a0 a1 a2 a3 

Cout 

S0 S1 S2 S3 

Cin “0” Full Adder Full Adder Full Adder Full Adder 

OVERFLOW 
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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 
ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow = Zero 
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Abstraction: The ALU 

•  General structure 
•  Two operand inputs 
•  Control inputs 

Input A 

Input B 

ALU Operation 

Carry Out 

Result 
Overflow 

Zero 
ALU 

23 © Alvin R. Lebeck CPS 104 

The Shift Operation 

•  Consider an 8-bit machine 
•  How do I implement the shift operation? 
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Shifter 

CPS 104 
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Summary thus far 

•  Given Boolean function, generate a circuit that
 “realizes” the function. 

•  Constructed circuits that can add and subtract. 
•  The ALU: a circuit that can add, subtract, detect

 overflow, compare, and do bit-wise operations (AND,
 OR, NOT) 

•  Shifter 
Next up: Storage Elements: Registers, Latches, Buses 
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Memory Elements 

•  All the circuit we looked at so far are combinational
 circuits: the output is a Boolean function of the
 inputs. 

•  We need circuits that can remember values.
 (registers) 

•  The output of the circuit is a function of the input
 AND a stored value (state) .   

•  Circuits with memory are called sequential circuits.  
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R  S  Q 
0  0  Q 
0  1  1 
1  0  0 
1  1  - 

Set-Reset Latch 

R 

S 

Q 

Q 
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Set-Reset Latch (Continued) 

R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
0 

R  S  Q 
0  0  Q 
0  1  1 
1  0  0 
1  1  - 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

Does not 
 affect Output 
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  On C    D is transferred to the first D latch and the second is stable. 

  On C    the output of the first stage is transferred to the second 
   (output),  and the first stage is stable. 

D Flip-Flop 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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1 0 0 0 0 1 1 1 

Clock 

D 

Q1 

Q 
1 0 0 0 0 1 1 1 

D Flip-Flop Timing 

D 
latch 

D Q1 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 

Time 
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D  E  Q 
0  1  0 
1  1  1 
-  0  Z 

Z :- High Impedance 

D Q 

E 

  The Tri-State driver is like a (one directional) switch: 
  When the Enable is on  (E=1) it transfers the input to the output. 
  When the Enable is off  (E=0) it disconnects the output. 

D Q 

E 

Tri-State Driver 
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  The Bus: Many to many connections. 
  Mutual exclusion: At most one Enable is on! 

Bus Connections 
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Register Cells on a bus 

One can “source” and “sink” from any cell on the bus 
by activating the right controls (WE and RE).  

D 

E 

Q 

Q 

D   
latch 

RE WE 

D 

E 

Q 

Q 

D   
latch 

RE WE 

D 

E 

Q 

Q 

D   
latch 

RE WE 

D 

E 

Q 

Q 

D   
latch 

RE WE 
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3-Port Register Cell 

Q 

Q 

D ata-In 

D in E nable OutA OutB 

Bus-B 

Bus-A 

Bus-C 

Complement Q 

•  Stores one bit of a register 
•  Can Read onto Bus-A & Bus-B and Write fromBus-C 
    Simultaneously 
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Q 

Q 

Bus-B 

Bus-A 

Bus-C 

Q 

Q 

Bus-B 

Bus-A 

Bus-C 

Bit-0 

Bit-1 

EA EB EC 

3-Port Register File 
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Address Decode Circuit 

A0 

A1 
EA 

B0 

B1 

EB 
C0 

C1 
EC 

Q 

Q 

Data-in 

OutA OutB DEnable 
Bus-A 

Bus-B 
Bus-C 

Register address: 01 
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Reg-0 Reg-1 Reg-2 Reg-3 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

One-bit Cell 

A3 
B3 
C3 

A-En 
Add-A1 
Add-A0 
B -En 
Add-B 1 
Add-B 0 

C -En 
Add-C 1 
Add-C 0 

A1 
B1 
C1 

A2 
B2 
C2 

A0 
B0 
C0 

Register File (Four 4-bit Registers) 
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Summary 

•  Given Boolean function, generate a circuit that
 “realize” the function. 

•  Constructed circuits that can add and subtract. 
•  The ALU: a circuit that can add, subtract, detect

 overflow, compare, and do bit-wise operations (AND,
 OR, NOT) 

•  Shifter 
•  Memory Elements: SR-Latch, D Latch, D Flip-Flop 
•  Tri-state drivers & Bus Communication 
•  Register Files 
•  Control Signals modify what circuit does with inputs 

 ALU, Shift, Register Read/Write  


