$\square$

## Review: Digital Design

- Logic Design, Switching Circuits, Digital Logic

Recall: Everything is built from transistors

- A transistor is a switch
- It is either on or off
- On or off can represent True or False

Given a bunch of bits (0 or 1)...

- Is this instruction a lw or a beq?
- What register do I read?
- How do I add two numbers?
- Need a method to reason about complex expressions
© Alvin R. Lebeck CPS 104


## Today's Lecture

- Homework \#3 Assigned Due Mar 4
- Project: form groups of 3 (preferred) by Mar 6, I will assign after that
- Project Specifications on Web, Due April 17 (written document and demonstration)
- Building the building blocks...

Outline

- Review
- Digital building blocks
- An Arithmetic Logic Unit (ALU)

Reading
Appendix C, Chapter 3
© Alvin R. Lebeck

## Review: Boolean Functions

- Boolean functions have arguments that take two values ( $\{T, F\}$ or $\{0,1\}$ ) and they return a single or a set of ( $\{T, F\}$ or $\{0,1\}$ ) value(s).
- Boolean functions can always be represented by a table called a "Truth Table"
- Example: F: $\{0,1\} 3->\{0,1\} 2$

| a | b | c | $\mathrm{f}_{1} \mathrm{f}_{2}$ |  |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

© Alvin R. Lebeck
CPS 104

## Review: Boolean Functions and Expressions

$$
F(A, B, C)=\left(A^{*} B\right)+\left(\sim A^{*} C\right)
$$

| $A$ | $B$ | $C$ | $F$ |
| :--- | :--- | :--- | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

## Review: Boolean Gates

- Gates are electronics devices that implement simple Boolean functions


## Examples


© Alvin R. Lebeck


## Parity Example

- The parity code of a binary word counts the number of ones in a word. If there are an even number of ones the parity code is $\mathbf{0}$, if there are an odd number of ones the parity code is 1 . For example, the parity of 0101 is 0 , and the parity of 1101 is 1 .
- Construct the truth table for a function that computes the parity of a four-bit word. Implement this function using AND, OR and NOT gates. (Note there are no constraints on the number of gate inputs.)


## Circuit Example: 2x1 MUX

Multiplexor (MUX) selects one of many inputs

© Alvin R. Lebeck CPS 104

- What operations are there?
- Arithmetic Logic Unit (ALU)
> Hardware that performs operations
> Only one operation at a time
- How do we implement the operations?
$>$ Consider AND, OR, NOT, and ADD
> Input is two bits, output...

| Truth Table for 1-bit Addition |  |  |
| :---: | :---: | :---: |
| $\begin{aligned} & 01701109 \\ & 01101101 \end{aligned}$ |  | Sum $\mathrm{C}_{\text {out }}$ |
|  | 0 0 0 <br> 0 0  | 0 |
|  | $\begin{array}{llll}0 & 0 & 1\end{array}$ | 10 |
|  | 0 1 0 <br> 0 1  | 10 |
| +00101100 | 0 1 1 | $0 \quad 1$ |
| 10011001 | $1 \begin{array}{lll}1 & 0 & 0\end{array}$ | 10 |
|  | 1 0 1 | 01 |
|  | 1 1 0 | $0 \quad 1$ |
|  | 1 1 1 | 1 |
| What is the circuit for Sum and for Cout? |  |  |
| © Alvin R. Lebeck | CPS 104 |  |





## Abstraction: The ALU

- General structure
- Two operand inputs
- Control inputs

© Alvin R. Lebeck
CPS 104


## The Shift Operation

- Consider an 8-bit machine
- How do I implement the shift operation?


## Summary thus far

- Given Boolean function, generate a circuit that "realizes" the function.
- Constructed circuits that can add and subtract.
- The ALU: a circuit that can add, subtract, detect overflow, compare, and do bit-wise operations (AND, OR, NOT)
- Shifter

Next up: Storage Elements: Registers, Latches, Buses

## Memory Elements

- All the circuit we looked at so far are combinational circuits: the output is a Boolean function of the inputs.
- We need circuits that can remember values. (registers)
- The output of the circuit is a function of the input AND a stored value (state) .
- Circuits with memory are called sequential circuits








## Summary

- Given Boolean function, generate a circuit that "realize" the function.
- Constructed circuits that can add and subtract.
- The ALU: a circuit that can add, subtract, detect overflow, compare, and do bit-wise operations (AND, OR, NOT)
- Shifter
- Memory Elements: SR-Latch, D Latch, D Flip-Flop
- Tri-state drivers \& Bus Communication
- Register Files
- Control Signals modify what circuit does with inputs > ALU, Shift, Register Read/Write
© Alvin R. Lebeck

