
Basics of Logic Design
Arithmetic Logic Unit (ALU)

Computer Science 104

2 © Alvin R. Lebeck CPS 104

•  Homework #3 Assigned Due Mar 4
•  Project: form groups of 3 (preferred) by Mar 6, I will

 assign after that
•  Project Specifications on Web, Due April 17 (written

 document and demonstration)
•  Building the building blocks…
Outline
•  Review
•  Digital building blocks
•  An Arithmetic Logic Unit (ALU)
Reading

 Appendix C, Chapter 3

Today’s Lecture

3 © Alvin R. Lebeck CPS 104

Review: Digital Design

•  Logic Design, Switching Circuits, Digital Logic
Recall: Everything is built from transistors
•  A transistor is a switch
•  It is either on or off
•  On or off can represent True or False
Given a bunch of bits (0 or 1)…
•  Is this instruction a lw or a beq?
•  What register do I read?
•  How do I add two numbers?
•  Need a method to reason about complex expressions

4 © Alvin R. Lebeck CPS 104

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Review: Boolean Functions

•  Boolean functions have arguments that take two
 values ({T,F} or {0,1}) and they return a single or a
 set of ({T,F} or {0,1}) value(s).

•  Boolean functions can always be represented by a
 table called a “Truth Table”

•  Example: F: {0,1}3 -> {0,1}2

5 © Alvin R. Lebeck CPS 104

F(A, B, C) = (A * B) + (~A * C)

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Review: Boolean Functions and Expressions

6 © Alvin R. Lebeck CPS 104

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b) a
b

NAND(a,b) a
b

a
b

NOR(a,b) XNOR(a,b) a
b

a NOT(a)

Review: Boolean Gates

•  Gates are electronics devices that implement simple
 Boolean functions

Examples

7 © Alvin R. Lebeck CPS 104

F = ~a*b + ~b*a

a

b F

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

Review: Boolean Functions, Gates and Circuits

•  Circuits are made from a network of gates. (function
 compositions).

XOR(a,b) a
b

8 © Alvin R. Lebeck CPS 104

Parity Example

•  The parity code of a binary word counts the number
 of ones in a word. If there are an even number of
 ones the parity code is 0, if there are an odd number
 of ones the parity code is 1. For example, the parity
 of 0101 is 0, and the parity of 1101 is 1.

•  Construct the truth table for a function that
 computes the parity of a four-bit word. Implement
 this function using AND, OR and NOT gates. (Note
 there are no constraints on the number of gate
 inputs.)

9 © Alvin R. Lebeck CPS 104

Circuit Example: Decoder

I1 I0 Q0 Q1 Q2 Q3

0 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

1 1 0 0 0 1

10 © Alvin R. Lebeck CPS 104

s

a
b

y

Y = (A * S) + (B * ~S)

B

A

S

Gate 3

Gate 2

Gate 1

Circuit Example: 2x1 MUX

MUX(A, B, S) = (A * S) + (B * ~S)

Multiplexor (MUX) selects one of many inputs

11 © Alvin R. Lebeck CPS 104

Example 4x1 MUX

0

1

2

3 a

b

c

d

y

S

2

a
b

c
d

y

s0 s1

0

1

0

1
0

1

12 © Alvin R. Lebeck CPS 104

Arithmetic and Logical Operations in ISA

•  What operations are there?
•  Arithmetic Logic Unit (ALU)

 Hardware that performs operations
 Only one operation at a time

•  How do we implement the operations?
 Consider AND, OR, NOT, and ADD
 Input is two bits, output…

13 © Alvin R. Lebeck CPS 104

Truth Table for 1-bit Addition

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

What is the circuit for Sum and for Cout?

01101100

 01101101
+00101100
 10011001

14 © Alvin R. Lebeck CPS 104

A 1-bit Full Adder

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

01101100

 01101101
+00101100
 10011001

a

b

Cin

Cout

Sum

15 © Alvin R. Lebeck CPS 104

b0 b1 b2 b3 a0 a1 a2 a3

Cout

S0 S1 S2 S3

Example: 4-bit adder

Cin “0” Full Adder Full Adder Full Adder Full Adder

16 © Alvin R. Lebeck CPS 104

Adder

C in

C ou t

F

2
0

1

2

3

a

b

Q

 F Q
 0 a + b
 1 NOT b
 2 a OR b
 3 a AND b

ALU Slice (Almost)

17 © Alvin R. Lebeck CPS 104

Subtraction

•  How do we perform integer subtraction?
•  What is the HW?

18 © Alvin R. Lebeck CPS 104

ALU Slice

A F Q
0 0 a + b
1 0 a - b
- 1 NOT b
- 2 a OR b
- 3 a AND b

Adder

C in

C ou t

F

2
0

1

2

3
a

b

Q

0
1

~Add/Sub

19 © Alvin R. Lebeck CPS 104

Overflow
Example1:
0100000

 01101012 (= 5310)
+01010102 (= 4210)
 10111112 (=-3310)

Example2:
1000000

 10101012 (=-4310)
+10010102 (=-5410)
 00111112 (= 3110)

Example3:
1100000

 01101012 (= 5310)
+11010102 (=-2210)
 00111112 (= 3110)

Example4:
0000000

 00101012 (= 2110)
+01010102 (= 4210)
 01111112 (= 6310)

20 © Alvin R. Lebeck CPS 104

Overflow Detection for 4-bit adder

b0 b1 b2 b3 a0 a1 a2 a3

Cout

S0 S1 S2 S3

Cin “0” Full Adder Full Adder Full Adder Full Adder

OVERFLOW

21 © Alvin R. Lebeck CPS 104

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice
ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

22 © Alvin R. Lebeck CPS 104

Abstraction: The ALU

•  General structure
•  Two operand inputs
•  Control inputs

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

23 © Alvin R. Lebeck CPS 104

The Shift Operation

•  Consider an 8-bit machine
•  How do I implement the shift operation?

24 © Alvin R. Lebeck

Shifter

CPS 104

25 © Alvin R. Lebeck CPS 104

Summary thus far

•  Given Boolean function, generate a circuit that
 “realizes” the function.

•  Constructed circuits that can add and subtract.
•  The ALU: a circuit that can add, subtract, detect

 overflow, compare, and do bit-wise operations (AND,
 OR, NOT)

•  Shifter
Next up: Storage Elements: Registers, Latches, Buses

26 © Alvin R. Lebeck CPS 104

Memory Elements

•  All the circuit we looked at so far are combinational
 circuits: the output is a Boolean function of the
 inputs.

•  We need circuits that can remember values.
 (registers)

•  The output of the circuit is a function of the input
 AND a stored value (state) .

•  Circuits with memory are called sequential circuits.

27 © Alvin R. Lebeck CPS 104

R S Q
0 0 Q
0 1 1
1 0 0
1 1 -

Set-Reset Latch

R

S

Q

Q

28 © Alvin R. Lebeck CPS 104

Set-Reset Latch (Continued)

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
0

R S Q
0 0 Q
0 1 1
1 0 0
1 1 -

29 © Alvin R. Lebeck CPS 104

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

30 © Alvin R. Lebeck CPS 104

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
 affect Output

31 © Alvin R. Lebeck CPS 104

  On C D is transferred to the first D latch and the second is stable.

  On C the output of the first stage is transferred to the second
 (output), and the first stage is stable.

D Flip-Flop

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

32 © Alvin R. Lebeck CPS 104

1 0 0 0 0 1 1 1

Clock

D

Q1

Q
1 0 0 0 0 1 1 1

D Flip-Flop Timing

D
latch

D Q1

E

D
latch

D Q

E Q Q

Q D

C

Time

33 © Alvin R. Lebeck CPS 104

D E Q
0 1 0
1 1 1
- 0 Z

Z :- High Impedance

D Q

E

  The Tri-State driver is like a (one directional) switch:
  When the Enable is on (E=1) it transfers the input to the output.
  When the Enable is off (E=0) it disconnects the output.

D Q

E

Tri-State Driver

34 © Alvin R. Lebeck CPS 104

  The Bus: Many to many connections.
  Mutual exclusion: At most one Enable is on!

Bus Connections

35 © Alvin R. Lebeck CPS 104

Register Cells on a bus

One can “source” and “sink” from any cell on the bus
by activating the right controls (WE and RE).

D

E

Q

Q

D
latch

RE WE

D

E

Q

Q

D
latch

RE WE

D

E

Q

Q

D
latch

RE WE

D

E

Q

Q

D
latch

RE WE

36 © Alvin R. Lebeck CPS 104

3-Port Register Cell

Q

Q

D ata-In

D in E nable OutA OutB

Bus-B

Bus-A

Bus-C

Complement Q

•  Stores one bit of a register
•  Can Read onto Bus-A & Bus-B and Write fromBus-C
 Simultaneously

37 © Alvin R. Lebeck CPS 104

Q

Q

Bus-B

Bus-A

Bus-C

Q

Q

Bus-B

Bus-A

Bus-C

Bit-0

Bit-1

EA EB EC

3-Port Register File

38 © Alvin R. Lebeck CPS 104

Address Decode Circuit

A0

A1
EA

B0

B1

EB
C0

C1
EC

Q

Q

Data-in

OutA OutB DEnable
Bus-A

Bus-B
Bus-C

Register address: 01

39 © Alvin R. Lebeck CPS 104

Reg-0 Reg-1 Reg-2 Reg-3

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

One-bit Cell

A3
B3
C3

A-En
Add-A1
Add-A0
B -En
Add-B 1
Add-B 0

C -En
Add-C 1
Add-C 0

A1
B1
C1

A2
B2
C2

A0
B0
C0

Register File (Four 4-bit Registers)

40 © Alvin R. Lebeck CPS 104

Summary

•  Given Boolean function, generate a circuit that
 “realize” the function.

•  Constructed circuits that can add and subtract.
•  The ALU: a circuit that can add, subtract, detect

 overflow, compare, and do bit-wise operations (AND,
 OR, NOT)

•  Shifter
•  Memory Elements: SR-Latch, D Latch, D Flip-Flop
•  Tri-state drivers & Bus Communication
•  Register Files
•  Control Signals modify what circuit does with inputs

 ALU, Shift, Register Read/Write

