
cps 104 pipeline.1 ©ARL 2001

CPS 104

Pipelining, Superscalar, Multiprocessors

cps 104 pipeline.2 ©ARL 2001

Admin

� Homework 6 due Wed

� Projects due Wed

� Final Tuesday April 28, 7pm-10pm

� Review (Jie will have one to work problems)

cps 104 pipeline.3 ©ARL 2001

Wr

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem

Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch

R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

Ifetch Reg Exec Mem

cps 104 pipeline.4 ©ARL 2001

Pipelining Summary

� Most modern processors use pipelining

� Pentium 4 has 24 (35) stage pipeline!

� Intel Core 2 duo has 14 stages

� Alpha 21164 has 7 stages

� Pipelining creates more headaches for exceptions, etc…

� Pipelining augmented with superscalar capabilities

cps 104 pipeline.5 ©ARL 2001

Superscalar Processors

� Key idea: execute more than one instruction per cycle

� Pipelining exploits parallelism in the “stages” of instruction execution

� Superscalar exploits parallelism of independent instructions

� Example Code:

sub $2, $1, $3

and $12, $3, $5

or $13, $6, $2

add $3, $3, $2

sw $15, 100($2)

� Superscalar Execution

sub $2, $1, $3 and $12, $3, $5

or $13, $6, $2 add $3, $3, $2

sw $15, 100($2)

cps 104 pipeline.6 ©ARL 2001

Superscalar Processors

� Key Challenge: Finding the independent instructions

� Instruction level parallelism (ILP)

� Option 1: Compiler

�Static scheduling (Alpha 21064, 21164; UltraSPARC I, II;
Pentium)

� Option 2: Hardware

�Dynamic Scheduling (Alpha 21264; PowerPC; Pentium Pro,
3, 4)

�Out-of-order instruction processing

cps 104 pipeline.7 ©ARL 2001

Instruction Level Parallelism

� Problems:

�Program structure: branch every 4-8 instructions

�Limited number of registers

� Static scheduling: compiler must find and move instructions
from other basic blocks

� Dynamic scheduling: Hardware creates a big “window” to look
for independent instructions

�Must know branch directions before branch is executed!

�Determines true dependencies.

� Example Code:

sub $2, $1, $3

and $12, $3, $2

or $2, $6, $4

add $3, $3, $2

sw $15, 100($2)

cps 104 pipeline.8 ©ARL 2001

Exposing Instruction Level Parallelism

� Branch prediction

�Hardware can remember if branch was taken

�Next time it sees the branch it uses this to predict outcome

� Register renaming

� Indirection! The CS solution to almost everything

�During decode, map register name to real register location

�New location allocated when new value is written to reg.

� Example Code:

sub $2, $1, $3 # writes $2 = $p1

and $12, $3, $2 # reads $p1

or $2, $6, $4 # writes $2 = $p3

add $3, $3, $2 # reads $p3

sw $15, 100($2) # reads $p3

cps 104 pipeline.9 ©ARL 2001

CPU design Summary

� Disadvantages of the Single Cycle Processor

� Long cycle time

� Cycle time is too long for all instructions except the Load

� Multiple Clock Cycle Processor:

� Divide the instructions into smaller steps

� Execute each step (instead of the entire instruction) in one cycle

� Pipeline Processor:

� Natural enhancement of the multiple clock cycle processor

� Each functional unit can only be used once per instruction

� If a instruction is going to use a functional unit:

� it must use it at the same stage as all other instructions

� Pipeline Control:

� Each stage’s control signal depends ONLY on the instruction
that is currently in that stage

cps 104 pipeline.10 ©ARL 2001

Additional Notes

� All Modern CPUs use pipelines.

� Many CPUs have 8-12 pipeline stages.

� The latest generation processors (Pentium-4, PowerPC G4, SUN’s
UltraSPARC) use multiple pipelines to get higher speed (Superscalar
design).

� The course: CPS220: Advanced Computer Architecture I covers
Superscalar processors.

� Now, Parallel Architectures…

cps 104 pipeline.11 ©ARL 2001

What is Parallel Computer Architecture?

� A Parallel Computer is a collection of processing elements that
cooperate to solve large problems fast

�how large a collection?

�how powerful are the elements?

�how does it scale up?

�how do they cooperate and communicate?

�how is data transmitted between processors?

�what are the primitive abstractions?

�how does it all translate to performance?

cps 104 pipeline.12 ©ARL 2001

Parallel Computation: Why and Why Not?

� Pros

� Performance

� Cost-effectiveness (commodity parts)

� Smooth upgrade path

� Fault Tolerance

� Cons

� Difficult to parallelize applications

� Requires automatic parallelization or parallel program
development

� Software! AAHHHH!

cps 104 pipeline.13 ©ARL 2001

Simple Problem

for i = 1 to N

A[i] = (A[i] + B[i]) * C[i]

sum = sum + A[i]

� Split the loops

� Independent iterations

for i = 1 to N

A[i] = (A[i] + B[i]) * C[i]

for i = 1 to N

sum = sum + A[i]

cps 104 pipeline.14 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 14

Parallel Programming

�Parallel software is the problem

�Need to get significant performance
improvement

�Otherwise, just use a faster uniprocessor,
since it’s easier!

�Difficulties

�Partitioning

�Coordination

�Communications overhead

§
7

.2
 T

h
e D

ifficu
lty

 o
f C

rea
tin

g
 P

a
ra

llel P
ro

cessin
g

 P
ro

g
ra

m
s

cps 104 pipeline.15 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 15

Amdahl’s Law

�Sequential part can limit speedup

�Example: 100 processors, 90× speedup?

�Tnew = Tparallelizable/100 + Tsequential

�

�Solving: Fparallelizable = 0.999

�Need sequential part to be 0.1% of
original time

90
/100F)F(1

1
Speedup

ableparallelizableparalleliz

=

+−

=

cps 104 pipeline.16 ©ARL 2001

Small Scale Shared Memory Multiprocessors

� Small number of processors connected to one shared memory

� Memory is equidistant from all processors (UMA)

� Kernel can run on any processor (symmetric MP)

� Intel dual/quad Pentium

� Multicore

Main Memory

P

$

P

$

P

$

P

$

P

$

P

$

P

$

P

$

Cache(s)

and

TLB

0 N-1

cps 104 pipeline.17 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 17

Four Example Systems

§
7

.1
1

 R
ea

l S
tu

ff: B
en

ch
m

a
rk

in
g

 F
o
u

r M
u

ltico
res …

2 × quad-core

Intel Xeon e5345

(Clovertown)

2 × quad-core

AMD Opteron X4 2356

(Barcelona)

cps 104 pipeline.18 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 18

Four Example Systems

2 × oct-core

IBM Cell QS20

2 × oct-core

Sun UltraSPARC

T2 5140 (Niagara 2)

cps 104 pipeline.19 ©ARL 2001

Cache Coherence Problem (Initial State)

P1 P2

x

BUS

Main Memory

T
im

e

cps 104 pipeline.20 ©ARL 2001

Cache Coherence Problem (Step 1)

P1 P2

x

BUS

Main Memory

T
im

e

ld r2, x

cps 104 pipeline.21 ©ARL 2001

Cache Coherence Problem (Step 2)

P1 P2

x

BUS

Main Memory

ld r2, x

T
im

e

ld r2, x

cps 104 pipeline.22 ©ARL 2001

Cache Coherence Problem (Step 3)

P1 P2

x

BUS

Main Memory

ld r2, x
add r1, r2, r4
st x, r1

T
im

e

ld r2, x

cps 104 pipeline.23 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 23

Message Passing

�Each processor has private physical
address space

�Hardware sends/receives messages
between processors

§
7

.4
 C

lu
sters a

n
d

 O
th

er M
essa

g
e-P

a
ssin

g
 M

u
ltip

ro
cesso

rs

cps 104 pipeline.24 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 24

Loosely Coupled Clusters

�Network of independent computers

�Each has private memory and OS

�Connected using I/O system

� E.g., Ethernet/switch, Internet

�Suitable for applications with independent tasks

�Web servers, databases, simulations, …

�High availability, scalable, affordable

�Problems

�Administration cost (prefer virtual machines)

�Low interconnect bandwidth

� c.f. processor/memory bandwidth on an SMP

cps 104 pipeline.25 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 25

Grid Computing

�Separate computers interconnected by
long-haul networks

�E.g., Internet connections

�Work units farmed out, results sent back

�Can make use of idle time on PCs

�E.g., SETI@home, World Community Grid

cps 104 pipeline.26 ©ARL 2001
Chapter 7 — Multicores, Multiprocessors, and Clusters — 26

Multithreading

�Performing multiple threads of execution in parallel

�Replicate registers, PC, etc.

�Fast switching between threads

�Fine-grain multithreading

�Switch threads after each cycle

� Interleave instruction execution

� If one thread stalls, others are executed

�Coarse-grain multithreading

�Only switch on long stall (e.g., L2-cache miss)

�Simplifies hardware, but doesn’t hide short stalls (eg, data
hazards)

§
7

.5
 H

a
rd

w
a

re M
u

ltith
rea

d
in

g

