

CPS110: Landon Cox Page 1 of
24

Address spaces and memory management

Review of processes

 Process = one or more threads in an address space

 Thread = stream of execution; unit of concurrency

 Address space = memory space that threads use; unit of

data

Address space abstraction

 Address space = all the memory data the process can use as

it runs. Includes program code, stack, data segment

 Hardware interface (physical reality): one memory of small

size, shared between processes

 Application interface (abstraction provided by OS): each

process has its own memory, as large as the virtual address

space

Illusions provided by address spaces

 Address independence: same numeric address can be used

in different address spaces (i.e. different processes), yet

remain logically distinct

 Protection: one address space can’t access data in another

address space (actually controlled sharing)

 Virtual memory: an address space can be larger than the

amount of physical memory on the machines

Uni-programming

1 process runs at a time (viz. one process occupies memory at a

time)

Always load process into the same spot in memory (and reserve

some space for the OS)

fffff (high memory)

.

. operating system

.

80000

7ffff

.

. user process

.

00000 (low memory)

Achieves address independence by always loading process into

same physical memory location

Problems with uni-programming?

CPS110: Landon Cox Page 2 of
24

Multi-programming and address translation

Multi-programming: more than 1 process is in memory at a time

 Need to support address translation

 Need to support protection

Must translate addresses issued by a process so they don’t conflict

with addresses issues by other processes

 Static address translation: translate addresses before

execution (translation remains constant during execution)

 Dynamic address translation: translate addresses during

execution (translation may change during execution)

Is it possible to run two processes at the same time (both are in

memory) and provide address independence with only static

address translation?

Does this achieve the other address space abstractions?

Achieving all the address space abstractions requires doing some

work on every memory reference

CPS110: Landon Cox Page 3 of
24

Dynamic address translation

Translate every memory reference from virtual address to physical

address

 Virtual address: an address viewed by the user process (the

abstraction provided by the OS)

 Physical address: an address viewed by the physical

memory

Translation enforces protection

 One process can’t even refer to another process’s address

space

Translation enables virtual memory

 A virtual address only needs to be in physical memory when

it’s being accessed

 Change translations on the fly as different virtual addresses

occupy physical memory

Many ways to implement translator

Does dynamic translation require hardware support?

Address translation

Lots of ways to implement the translator. Remember big picture:

Tradeoffs:

 Flexibility (e.g. sharing, growth, virtual memory)

 Size of translation data

 Speed of translation

User

process

Translator

(MMU)

Physical

memory
Virtual

address

Physical

address

User

process

Translator

(MMU)

Physical

memory
Virtual

address

Physical

address

CPS110: Landon Cox Page 4 of
24

Base and bounds

Load each process into contiguous regions of physical memory;

prevent each process from accessing data outside its region

 if (virtual address > bound) {

 trap to kernel; kill process (core dump);

 } else {

 physical address = virtual address + base

}

Process has illusion of running on its own dedicated machine with

memory [0, bound)

This is similar to linker/loader, but also protects processes from

each other.

As with all translation data, only kernel can change base and

bounds.

During context switch, must change all translation data (base and

bounds registers)

What to do when an address space grows?

Low hardware cost (2 registers, adder, comparator), low-overhead

(add and compare on each memory reference)

Bound

0

Virtual

memory

Physical

memory

 Physical memory size

Base + bound

Base

0

CPS110: Landon Cox Page 5 of
24

Hard for a single address space to be larger than physical memory

But sum of all address spaces can be larger than physical memory

 Swap an entire address space out to disk, swap address

space for new process in

Can’t share part of an address space between processes

External fragmentation

 Processes come and go, leaving a mishmash of available

memory regions

Process 1 start: 100KB (phys. mem. 0-99KB)

Process 2 start: 200KB (phys. mem. 100-299KB)

Process 3 start: 300KB (phys. mem. 300-599KB)

Process 4 start: 400KB (phys. mem. 600-999KB)

Process 3 exits (frees phys. mem. 300-599 KB)

Process 5 start: 100KB (phys. mem. 300-399KB)

Process 1 exits (frees phys. mem. 0-99KB)

Process 6 start: 300KB

300KB are free (400-599KB; 0-99KB), but not

contiguous

 This is called “external fragmentation”: wasted memory

between allocated regions. Can waste lots of memory

Allocation strategies to minimize external fragmentation

 Best fit: allocate the smallest memory region that can

satisfy the request (least amount of wasted space)

 First fit: allocate the memory region that you find first that

can satisfy the request

 In worst case, must re-allocate existing memory regions (by

copying them to another area)

Physical

memory

Virtual

memory

Data

(p1)

 Data

Data

Code

Code

Code

Data

(p2)

Virtual

memory

Virtual

address

(process 1)

Virtual

address

(process 2)

CPS110: Landon Cox Page 6 of
24

Hard to grow address space

 Might have to move to different region of physical memory

(which is slow)

How to extend more than one contiguous data structure in virtual

memory?

 What parts of the address space might grow as the process

runs?

CPS110: Landon Cox Page 7 of
24

Segmentation

Segment: a region of continuous memory

Base and bounds used a single segment. Let’s generalize this to

allow multiple segments, described by a table of base and bound

pairs.

Segment # Base Bound Description

0 4000 700 Code

1 0 500 Data

2 Unused

3 2000 1000 Stack

In segmentation, a virtual address takes the form

(Virtual segment #, offset)

 Could specify virtual segment # via the high bits of the

address, or via a special register, or implicit to the

instruction opcode

Physical

memory

Data

Stack

Code

4000

46ff

2000

2fff

0

4ff

Code

Stack

Data

0

6ff

0

4ff

0

fff

Virtual
memory

segment 0

Virtual
memory

segment 1

Virtual
memory

segment 3

CPS110: Landon Cox Page 8 of
24

Note that not all virtual addresses are valid

 E.g. no valid data in segment 2; no valid data in segment 1

above 4ff

 Valid means the region is part of the process’s virtual

address space. Invalid means this virtual address is illegal

for the process to access. Accesses to invalid addresses will

cause the OS to take corrective measures (usually a core

dump)

Protection: different segments can have different protection

 E.g. code can be read-only (allows instruction fetch, load)

 E.g. data is read/write (allows fetch, load, store)

 In contrast, base and bounds gives same protection to

entire address space

What must change on a context switch?

Pros and cons

+ works well for sparse address space (with big gaps of

invalid areas

+ easy to share whole segments without sharing entire

address space

- complex memory allocation

Can a single address space be larger than physical memory?

How to make memory allocation easy and allow an address space to

be larger than physical memory?

CPS110: Landon Cox Page 9 of
24

Paging

Allocate physical memory in terms of fixed-size chunks of memory

(called pages)

 Fixed unit makes it easier to allocate

 Any free physical page can store any virtual page

Virtual address

 Virtual page # (high bits of address, e.g. bits 31-12)

 Offset (low bits of address, e.g. bits 11-0 for 4KB page)

Translation data is the page table data

Virtual page # Physical page #

0 10
1 15
2 20
3 Invalid
… Invalid
1048575 invalid

Translation process

if (virtual page is invalid or non-resident or

 protected) {

 trap to OS fault handler

} else {

 Physical page # =

 pageTable[virtual page #].physPageNum

}

What must be changed on a context switch?

Each virtual page can be in physical memory or paged out to disk

(just like segments could be “swapped” out to disk)

CPS110: Landon Cox Page 10 of
24

How does the processor know that a virtual page is not in physical

memory?

Like segments, pages can have different protections

 E.g. read, write, execute

Valid vs. resident

Resident means a virtual page is in memory. It is NOT an error for a

program to access a non-resident page.

Valid means a virtual page is not currently legal for the program to

access.

Who makes a virtual page resident/non-resident?

Who makes a virtual page valid/invalid?

Why would a process want one of its virtual pages to be invalid?

CPS110: Landon Cox Page 11 of
24

Page size

What happens if page size is small?

What happens if page size is really big?

Could we use a large page size, but let other processes use the

leftover space in the page?

Page size is typically a compromise, e.g. 4KB or 8KB

Fixed vs. variable size partitions

 Fixed size (pages) must be a compromise (e.g. 4 or 8 KB).

Too small a size leads to a large translation table, while too

large a size leads to internal fragmentation

 Variable size (segments) can adapt to the need, but it’s hard

to pack these variable size partitions into physical memory

(leading to external fragmentation)

What happens to paging if the virtual address space is sparse (most

of the address space is invalid, with scattered valid regions)?

Paging pros and cons

 + simple memory allocation

 + can share lots of small pieces of an address space

+ easy to grow the address space. Simply add a virtual page

to the page table, and find a free physical page to hold the

virtual page before accessing it.

- big page tables

CPS110: Landon Cox Page 12 of
24

Comparing basic translation schemes

 Base and bound: unit of translation (and swapping) is an

entire address space

 Segments: unit of translation (and swapping) is a segment (a

few large, variable-sized segments per address space)

 Page: unit of translation (and swapping/paging) is a page

(lots of small, fixed-sized pages per address space)

How to modify paging to take less space?

Multi-level translation

Standard page table is a simple array (one degree of indirection).

Multi-level translation changes this into a tree (multiple degrees of

indirection).

E.g. two-level page table

 Index into the level 1 page table using virtual address bits

31-22

 Index into the level 2 page table using virtual address bits

21-12

 Page offsets: bits 11-0 (4KB page)

What information is stored in the level 1 page table?

What information is stored in the level 2 page table?

CPS110: Landon Cox Page 13 of
24

This is a two-level tree

VA bits
21-12

Physical
page #

0 10

1 15

2 20

3 2

How does this allow the translation data to take less space?

How to use shared memory when using multi-level page tables?

What must be changed on a context switch?

Another alternative: use segments in place of the level-1 page table.

This uses pages on level 2 (i.e. break each segment into pages)

VA bits
21-12

Physical
page #

0 30

1 4

2 8

3 3

0 1 2 3 Level 1 page table

NULL NULL

Level 2 page tables

CPS110: Landon Cox Page 14 of
24

Pros and cons

 + space-efficient for sparse address space

 + easy memory allocation

 + lots of ways to share memory

 - two extra lookups per memory reference

Translation lookaside buffer (TLB)

Translation when using paging involves 1 or more additional

memory references. How to speed up the translation process?

TLB caches translation from virtual page # to physical page # (TLB

conceptually caches the entire page table entry, e.g. dirty bit,

reference bit, protection)

If TLB contains the entry you’re looking for, can skip all the

translation steps above

On TLB miss, figure out the translation by getting the user’s page

table entry, store in the TLB, and then restart the instruction.

Does this change what happens on a context switch?

CPS110: Landon Cox Page 15 of
24

Replacement

One design dimension in virtual memory (and any cache) is which

page to replace (i.e. evict) when you need a free page.

Goal is to reduce the number of page faults

Random replacement

 Easy to implement, but poor results

FIFO

 Replace the page that was brought into memory the longest

time ago

 Unfortunately, this can replace popular pages that are

brought into memory a long time ago (and used frequently

since then)

OPT

 Replace the page that won’t be used for the longest time

 This yields the minimum number of misses, but requires

knowledge of the future

LRU (least recently used)

 Use past references to predict the future (temporal locality)

 If a page hasn’t been used for a long time, it probably won’t

be used again for a long time

 This yields low miss rate (similar to OPT), but is hard to

implement exactly

 LRU is an approximation of OPT. Can we approximate LRU

to make it easier to implement without increasing the rate

by too much? Basic idea is to replace an old page (not

necessarily the oldest page)

CPS110: Landon Cox Page 16 of
24

Clock

Most MMUs maintain a “referenced” bit for each resident page,

which is set automatically when the page is referenced. The

reference bit can be cleared by the OS.

Why is hardware support needed to maintain the reference bit?

How can you identify an “old” page?

Try to do this incrementally (rather than all at once)

To find a page to evict:

 Look at page being pointed to by clock hand

 Reference=0 means page hasn’t been accessed in a long

time (since last sweep), so this is your victim.

 Reference=1 means page has been accessed since your last

sweep. What to do?

Can this loop infinitely? What if it finds all pages referenced since

the last sweep?

New pages are put behind the clock hand, with reference=1

A

D

B

C E

F

CPS110: Landon Cox Page 17 of
24

Pageout

What to do with a page when it’s evicted?

Why not write pages to disk on every store?

While evicted page is being written to disk, the page being brought

into memory must wait

 May be able to reduce total work by giving preference to

dirty pages (e.g. could evict clean pages before dirty pages)

 If system is idle, might spend time profitably by writing back

dirty pages

CPS110: Landon Cox Page 18 of
24

Page table contents

Data stored in the hardware page table

 Resident bit: true if the virtual page is in physical memory

 Physical page # (if in physical memory)

 Dirty bit: set by MMU when page is read or written

 Reference bit: set by MMU when page is read or written

 Protection bits (readable, writable): set by operating system

to control access to page. Check by hardware on each

access.

MMU (memory management unit) of the CPU is responsible for

checking if the page is resident, checking if the page protections

allow this access, and setting the dirty/reference bits

 If page is resident and access is allowed, then MMU

translates the virtual address into a physical address (using

info from the TLB and page table) and issues the physical

memory address to the memory controller

 If pages is not resident, or protection bits disallow the

access, the MMU generates an exception (page fault)

Does the hardware page table need to store the disk block # for

non-resident virtual pages?

Do we really need hardware to maintain a “dirty” bit?

How to reduce # of faults required to do this?

Do we really need hardware to maintain a “reference” bit?

CPS110: Landon Cox Page 19 of
24

Translation data

Where is translation data kept?

How can the kernel refer to translation data? Translation data is not

in any process’s address space; it’s in physical (i.e. untranslated)

memory.

 Kernel can issue untranslated address (i.e. bypass the

translator)

 Kernel can map physical memory into a portion of its

address space

How does kernel access user’s address space?

Kernel vs. user mode

Who sets up the data used by the translator?

Kernel is allowed to modify any memory (including translation

tables)

How does machine know that kernel is running?

 Machine must know to allow kernel to bypass translator,

and to allow kernel to execute privileged instructions (e.g.

halt, I/O)

 Need hardware support: two processor modes (kernel and

user)

How have we handled the problem of protection so far?

 Implement protection by translating all addresses. But who

can modify data used by translator?

 Only kernel can modify translator’s data, but how does

processor know if kernel is running?

 Mode bit distinguishes between kernel and user. But is

allowed to modify mode bit?

CPS110: Landon Cox Page 20 of
24

Switching from user process into kernel

What causes a switch from a user process into the kernel?

Sequence of events that take place when C++ program calls cin

 C++ code calls cin

 cin is a standard library function that calls read ()

 read() is a standard library function that executes the

assembly-language instruction “syscall,” with parameters

(SYS_read, file number, size) in registers or on the stack

 when processor executes “syscall” instruction, it traps to

the kernel at a pre-specified location

 kernel syscall handler receives the trap, and calls the

kernel’s read() function

Details of what happens when trapping to kernel

 set processor mode bit to kernel

 save current registers (SP, PC, general purpose registers)

 set SP to the kernel’s stack

 change address spaces to the kernel’s address space (by

changing some data used by the translator)

 jump to the kernel exception handler

Does this look familiar?

How does the processor know the exception handler’s address?

CPS110: Landon Cox Page 21 of
24

Passing arguments to system call (and getting return values)

 can store arguments in registers or memory (according to

agreed-upon convention)

 if pass arguments via memory, which address space holds

the arguments?

 How does kernel access user’s address space?

 Kernel cannot assume arguments are valid. It must be

paranoid and check them all. Otherwise process could crash

kernel with bogus arguments.

Process creation

Steps in creating and starting a process

 Allocate process control block

 Read code from disk and store into memory

 Initialize machine registers

 Initialize translator data, e.g. page table and PTBR

 Set processor mode bit to “user”

 Jump to start of program

Need hardware support for last few steps

 Otherwise processor executing in user mode can’t access

the kernel’s jump instruction

Switching form kernel to user process (e.g. after a system call

completes) is the same as last 4 steps above

CPS110: Landon Cox Page 22 of
24

Multi-process issues

How to allocate physical memory between processes?

 Resource allocation is an issue whenever sharing a single

resource among multiple users (e.g. CPU scheduling)

 Often a tradeoff between globally optimal (best overall

performance) and fairness

Global vs. local replacement policy

 Global replacement: consider all pages equally when

looking for a page to evict

 Local replacement: only consider pages belonging to the

process needing a new page when looking for a page to

evict. But how to set the # of pages assigned to a process?

 Generally, global has lower overall miss rate, but local is

“fairer”

Thrashing

What would happen with lots of big processes, all actively using lots

of virtual memory?

Usually, performance degrades rapidly as you go from having all

programs fit in memory to not quite fitting in memory. This is called

“thrashing.”

Average access time = hit rate * hit time + miss rate * miss time

 E.g. hit time = 0.0001 ms, miss time = 10 ms

 100% hit rate: average access time is 0.0001 ms

 99% hit rate:

 90% hit rate:

Solutions to thrashing

 If a single process is actively using more pages than can fit,

there’s no solution—that process (at least) will thrash

 If problem is caused by the combination of several

processes, can alleviate thrashing by swapping all pages of a

process out to disk. That process won’t run at all, but other

processes will run much faster. Overall performance

improves.

CPS110: Landon Cox Page 23 of
24

Working set

What’s meant by a process “actively using” a lot of virtual pages?

Working set: all pages used in last T seconds (or T instructions)

 Larger working set  process needs more physical memory

to run well (i.e. avoid thrashing)

Sum of all working sets should fit in memory, otherwise system will

thrash

 Only run a set of processes whose working sets all fit in

memory (this is called a “balance set”)

How to measure size of working set for a process?

Examples of process creation

Unix separates process creation into two steps

 Unix fork: create a new process (with on thread). Address

space of new (child) process is a copy of the parent process

 Unix exec: overlay the new process’s address space with the

specified program and jump to its starting PC (this loads the

new program)

E.g. parent process wants to fork a child to do a task. Any problem

with having this new process be an exact copy of the parent?

CPS110: Landon Cox Page 24 of
24

Why does Unix fork copy the parent’s entire address space, just to

throw it out and start with the new address space?

 Unix provides the semantic of copying the parent’s entire

address space, but does not physically cop the data until

needed

 Separating fork and exec gives maximum flexibility for the

parent process to pass information to the child

 Common special case: fork a new process that runs the

same code as parent

Alternative: Windows creates new processes with a single call

(CreateProcess)

 Unix’s approach gives the flexibility of sharing arbitrary data

with child process

 Window’s approach allows the program to share the most

common data via parameters

Implementing a shell

Shell provides the user interface (sh, chs, tcsh, bash, zsh, etc.)

Windows explorer is similar

 Looks like part of the operating system, but we now know

enough to write a shell as a standard user program

How to write a shell?

