

CPS110: Landon Cox Page 1 of
16

Threads and concurrency

Motivation

 Operating systems are becoming extremely complex

 Multiple users, programs, I/O devices, etc

 How should we manage this complexity?

Decompose or separate hard problem into several simpler ones

Programs decompose into several rows

int main () {

 getInput ();

 computeResult ();

 printOutput ();

}

void getInput () {

 cout ();

 cin ();

}

void computeResult () {

 sqrt ();

 pow ();

}

void printOutput () {

 cout ();

}

Processes decompose mix of activities running on a processor into

several parallel tasks (columns).

 Each job can work independently of the others

Remember, for any area of the OS, ask:

 What interface does the hardware provide?

 What interface does the OS provide?

Job 1 Job 2 Job 3

main

computeResult

printOutput

CPS110: Landon Cox Page 2 of
16

What is in a process?

Definition of a process

 Informal: a program in execution; a running piece of code

along with all the things the code can read/write

Note that a process is not a program.

 Formal: one or more threads in their own address space

Play analogy

Thread

 Sequence of executing instructions from a program (i.e. the

running computation)

 Active

 Play analogy:

Address space

 All the data the process uses as it runs

 Passive (acted upon by threads)

 Play analogy: the objects on stage during a performance

Types of data in the address space

CPS110: Landon Cox Page 3 of
16

Multiple threads

Can have several threads in a single address space

 Play analogy: several actors on a single set. Sometimes they

interact (e.g. do a little dance together) and sometimes they

perform independently.

Private state for a thread vs. global state shared between threads

 What private state must a thread have?

 Other state is shared between all threads in a process

Upcoming lectures

Concurrency: multiple threads active at one time (multiple threads

could come from one process or from multiple processes)

 Thread is the unit of concurrency

 Two main topics:

o How can multiple threads cooperate on a single

task?

o How can multiple threads share a single CPU?

Address space

 Address space is the unit of state partitioning

 Main topic

o How can multiple address spaces share a single

physical memory efficiently and safely?

CPS110: Landon Cox Page 4 of
16

Can threads be truly independent?

Possible to have multiple threads on a computer system that don’t

cooperate or interact at all?

 e.g. mail program reads a PDF attachment and starts

acroread process to display the attachment?

 e.g. running an mp3 player and cps110 project on a

computer at the same time?

Two possible sources of sharing

Correct example of non-interacting threads

Web server example

But if threads are cooperating, is it still a helpful think of multiple

threads? Or is it simpler to think of a single thread doing multiple

things?

How to build a web server that receives multiple, simultaneous

requests, and that needs to read files from disk to satisfy each

request?

Handle one request at a time

 easy to program, but slow. Can’t overlap disk requests with

computation or network service.

CPS110: Landon Cox Page 5 of
16

Event-driven with asynchronous I/Os

 need to keep track of multiple outstanding requests

o request 1 arrives

o web server receives request 1

o web server starts disk I/O 1a to

satisfy request 1

o request 2 arrives

o web server receives request 2

o web server starts disk I/O 2a to

satisfy request 2

o request 3 arrives

o disk I/O 1a finishes

 at each point, web server must remember which requests

have arrived and are being serviced, what disk I/Os are

outstanding and which requests they belong to, and what

disk I/Os still need to be done to satisfy each request

Multiple cooperating threads

 each thread handles one request

 each thread can issue a blocking disk I/O , wait for I/O to

finish, and continue with the next part of its request

 even though a thread blocks, other threads can make

progress (and new threads can be started to handle in-

coming requests)

 where is the state of each request stored?

Benefits and uses of threads

The thread system of an operating system manages the sharing of

the single CPU among several threads (e.g. allowing one thread to

issue a blocking I/O and still allow other threads to make progress).

Applications (or higher-level parts of the OS) get a simpler

programming model.

Typical domains that use multiple threads

 program uses some slow resource, so it pays to have

multiple things happening at once

 physical controller (e.g. airplane controller)

slow component:

 window system (1 thread per window)

slow component:

 network server

slow component:

 parallel programming (using for multiple CPUs)

slow component:

CPS110: Landon Cox Page 6 of
16

Cooperating threads

First major topic in threads: how multiple threads can cooperate on

a single task

 assume for now that we have enough physical processors to

run each thread in its own CPU

 later we’ll discuss how to give the illusion of infinite physical

processors on a single processor

Ordering events from different threads is non-deterministic

 processor speeds may vary

e.g. after 10 seconds, different threads may have gotten

differing amounts of work done

thread A

thread B

thread C

Non-deterministic ordering produces non-

deterministic results

Printing example

 thread A: print ABC

 thread B: print 123

 possible outputs?

 impossible outputs?

 Ordering within a thread is guaranteed to be sequential, but

there are lots of ways to merge the orderings between

threads

 What is being shared between these two threads?

CPS110: Landon Cox Page 7 of
16

Arithmetic example

 initially, y=10

 thread A: x = y + 1;

 thread B: y = y *2;

 possible results?

Atomic operations

Example

 thread A: x = 1

 thread B: x = 2

 possible results?

 Is 3 a possible output?

Before we can reason at all about cooperating threads, we must

know that some operation is atomic.

CPS110: Landon Cox Page 8 of
16

Atomic: indivisible. Either happens in its entirety without

interruption, or has yet to happen at all.

 No events from other threads can happen in between the

start and end of an atomic event

In the above example, if assignment to x is atomic, then the only

possible results are 1 and 2.

In print example above, what are the possible outputs if each print

statement is atomic?

Print example above assumed printing a single character was

atomic. What if printing a character was not atomic?

On most machines, memory load and store are atomic.

But many instructions are not atomic, e.g. double-precision floating

point on a 32-bit machine (two separate memory operations)

If you don’t have any atomic operations, you can’t make one.

Fortunately, the hardware folks give us atomic operations, and we

can build up higher-level atomic primitives from there

Another example:

thread A thread B

i=0; i=0;

while (i < 10) { while (i > -10) {

 i++; i--;

} }

print “A finished”; print “B finished”;

Who will win?

Is it guaranteed that someone will win?

What if threads start at exactly the same speed and start close

together? Is it guaranteed to go on forever?

 What if i++ and i-- are not atomic?

 Should you worry about this actually happening?

CPS110: Landon Cox Page 9 of
16

Non-deterministic interleaving makes debugging challenging

 Heisenbug: a bug that goes away when you look at it (via

printf, via debugger, or just via re-running it)

Synchronizing between multiple threads

Must control the interleavings between threads

 order of some operations is irrelevant, because the

operations are independent

 other operations are dependent and their order matters

All possible interleavings must yield a correct answer

 a correct concurrent program will work no matter how fast

the processors executing the various threads are

Try to constrain the thread executions as little as possible

Controlling the execution and order of threads is called

“synchronization”

CPS110: Landon Cox Page 10 of
16

Too much milk

Problem and definition

 Landon and Melissa want to keep their refrigerator stocked

with at most one carton of milk

 If either sees the fridge empty, he/she has to go buy milk

 Correctness properties: someone will buy milk if needed,

but never more than one person buys milk

Solution number zero (no synchronization)

Landon: Melissa:

 if (noMilk) { if (noMilk) {

 buy milk buy milk

 } }

 Landon Melissa

3:00 look in fridge

 (no milk)

3:05 go to Whole Foods

3:10 look in fridge

 (no milk)

3:15 buy milk

3:20 go to Whole Foods

3:25 arrive home, put

 milk in fridge

3:30 buy milk

3:35 arrive home, put

 milk in fridge

 Too much milk!

First type of synchronization: mutual exclusion

Mutual exclusion

 Ensure that only 1 thread is doing a certain thing at one

time (others are excluded). E.g. only 1 person goes

shopping at a time.

Critical section

 A section of code that needs to run atomically with respect

to selected other pieces of code

 If code A and code B are critical sections with respect to

each other, then multiple threads should not be able to

interleave events from A and B

 Critical sections must be atomic with respect to each other

because they share data (or other resources such as a

screen or refrigerator)

 In too much milk solution zero, the critical section is “if

(noMilk), buy milk”. Landon and Melissa’s critical sections

must be atomic with respect to each other, i.e. events from

these critical sections must not be interleaved.

CPS110: Landon Cox Page 11 of
16

Too much milk (solution #1)

Assume the only atomic operations are load and store

Idea: leave note that you’re going to check on the milk status, so the

other person doesn’t also buy

 Landon: Melissa:

 if (noNote) { if (noNote) {

 leave note leave note

 if (noMilk) { if (noMilk) {

 buy milk buy milk

 } }

 remove note remove note

 } }

Does this work? If not, when could it fail?

Is solution #1 better than solution zero?

Too much milk (solution #2)

Idea: change the order of “leave note” and “check note”. This

requires labeled notes (otherwise you’ll see your own note and

think it was the other person’s note)

 Landon: Melissa:

 leave noteLandon leave noteMelissa

 if (no noteMelissa) { if (no noteLandon) {

 if (noMilk) { if (noMilk) {

 buy milk buy milk

 } }

 } }

 remove noteLandon remove noteMelissa

Does this work? If not, when could it fail?

CPS110: Landon Cox Page 12 of
16

Too much milk (solution #3)

Idea: have a way to decide who will buy milk when both leave notes

at the same time. Have Landon hang around to make sure the job is

done.

 Landon: Melissa:

 leave noteLandon leave noteMelissa

 while (noteMelissa) {

 do nothing

 }

 if (no noteLandon) {

 if (noMilk) { if (noMilk) {

 buy milk buy milk

 } }

 } }

 remove noteLandon remove noteMelissa

Landon’s “while (noteMelissa)” prevents him from running his

critical section at the same time as Melissa’s.

Proof of correctness:

 Melissa: if no noteLandon, then it is safe to buy because

Landon hasn’t started yet. Landon will just wait for Melissa

to be done before checking milk status.

 Melissa: if noteLandon, then Landon is in the body of the

code and will eventually buy milk (if needed). Note that

Landon may be waiting for Melissa to quit.

 Landon: if no noteMelissa, it is safe to buy because Landon

has already left noteLandon and Melissa will check

noteLandon in the future.

 Landon: if noteMelissa, Landon hangs around and waits to

see if Melissa buys milk. If Melissa buys milk, we’re done. If

Melissa doesn’t buy, Landon will buy.

Correct, but ugly

 Complicated and non-intuitive to prove correct

 Asymmetric

 Landon consumes CPU time while waiting for Melissa to

remove her note. This is called busy-waiting.

CPS110: Landon Cox Page 13 of
16

Higher-level synchronization

Solution: raise the level of abstraction to make life easier for the

programmer.

Locks (mutexes)

A lock prevents another thread from entering a critical section. For

example, lock the fridge while you’re shopping for milk to prevent

Landon and Melissa from both shopping.

Two operations

 lock (): wait until the lock is free, then acquire it

do {

 if (lock is free) {

 acquire lock

 break

 }

} while (1)

 unlock (): release the lock

Why was the note in Too Much Milk solutions #1 and #2 not a good

lock?

Four elements of locking

 lock is initially free

 acquire lock before entering critical section

 release lock when exiting a critical section

 wait to acquire lock if another thread already owns it

All synchronization involves waiting.

Threads can be running or blocked (waiting for something).

Concurrent programs

High-level software

primitives: locks,

semaphores, and monitors

Low-level atomic

operations: load/store,

interrupt enable/disable,

test&set

CPS110: Landon Cox Page 14 of
16

Locks make Too Much Milk really easy to solve!

 Landon: Melissa:

 lock () lock ()

 if (noMilk) { if (noMilk) {

 buy milk buy milk

 } }

 unlock () unlock ()

But this prevents Melissa from doing anything while Landon is

shopping because the critical section includes the shopping time.

How can we minimize the time the lock is held?

Thread-safe queue with locks

enqueue () {

 /* find tail of queue */

 for (ptr=head; ptr->next != NULL;

 ptr = ptr>next);

 /* add new element to tail of queue */

 ptr->next = new_element;

 new_element->next = NULL;

}

dequeue () {

 element = NULL;

 /* if something on queue, remove it */

 if (head->next != NULL) {

 element = head->next;

 head->next = head->next->next;

 }

 return element;

}

What bad things can happen if two threads manipulate the queue at

the same time?

CPS110: Landon Cox Page 15 of
16

Invariants for multi-threaded queue

Can enqueue () unlock anywhere?

This stable state is called an invariant, i.e. something that is

supposed to “always” be true for the linked list. For example, each

node must appear exactly once when traversing the list from head

to tail.

Is the invariant ever allowed to be false?

In general, must hold lock whenever you’re manipulating shared

data (i.e. whenever you’re breaking the invariant of the shared

data)

What if you’re only reading shared data (i.e. you’re not breaking the

invariant)?

What about the following locking scheme?

enqueue () {

 lock

 find tail of queue

 unlock

 lock

 add new element to tail of queue

 unlock

}

CPS110: Landon Cox Page 16 of
16

What if you wanted to have dequeue () wait if the queue is empty?

