

CPS110: Landon Cox Page 1 of
20

Implementing locks – atomicity in the thread

library

Concurrent programs use high-level synchronization operations

Implementing these high-level synchronization operations

 Used by multiple threads so they need to worry about

atomicity (e.g. they use data structures shared across

threads)

 Can’t use the high-level synchronization operations

themselves

Use interrupt disable/enable to ensure

atomicity

On uni-processor, operation is atomic as long as context switch

doesn’t occur in middle of the operation

 How does thread get context switched out?

 Prevent context switches at wrong time by preventing these

events

Concurrent program

High-level synchronization

(semarphores, locks, monitors)

Hardware (load/store, interrupt

enable/disable, test&set)

CPS110: Landon Cox Page 2 of
20

With interrupt disable/enable to ensure atomicity, why do we need

locks?

 User program could call interrupt disable before entering

critical section and call interrupt enable after leaving critical

section (and make sure not to call yield in the critical

section)

Lock implementation #1 (disable interrupts

with busy waiting)

lock () {

 disable interrupts

 while (value != FREE) {

 enable interrupts

 disable interrupts

 }

 value = BUSY

 enable interrupts

}

unlock () {

 disable interrupts

 value = FREE

 enable interrupts

}

Why does lock() disable interrupts in the beginning of the function?

CPS110: Landon Cox Page 3 of
20

Why is it ok to disable interrupts in lock()’s critical section (it wasn’t

ok to disable interrupts while user code was running)?

Do we need to disable interrupts in unlock()?

Why does the body of the while loop enable, then disable

interrupts?

Another atomic primitive: read-modify-write

instructions

Interrupt disable works on a uni-processor by preventing the

current thread from being switched out.

But this doesn’t work on a multi-processor

 Disabling interrupts on one processor doesn’t prevent other

processors from running

 Not acceptable (or provided) to modify interrupt disable to

stop other processors from running

Could use atomic load/store instructions (remember Too Much Milk

solution #3)

Modern processors provide an easier way with atomic read-modify-

write instructions

 Atomically {reads value from memory into a register, then

writes new value to that memory location}

CPS110: Landon Cox Page 4 of
20

Test_and_set: atomically writes 1 to a memory location (set) and

returns the value that used to be there (test)

Test_and_set(X) {

 tmp = X

 X = 1

 return (tmp)

}

 Note that only 1 process can see a transition from 0 to 1

Exchange (x86)

 Swaps value between register and memory

Lock implementation #2 (test&set with busy

waiting)

(value is initially 0)

lock () {

 while (test_and_set(value) == 1) {

 }

}

unlock () {

 value = 0

}

If lock is free (value = 0), test_and_set sets value to 1 and returns 0,

so the while loop finishes.

If lock is busy (value = 1), test_and_set doesn’t change the value and

returns 1, so loop continues.

CPS110: Landon Cox Page 5 of
20

Busy Waiting

Problem with lock implementations #1 and #2

 Waiting thread uses lots of CPU time just checking for the

lock to become free. This is called “busy waiting.”

 Better for thread to go to sleep and let other threads run

 Strategy for reducing busy-waiting: integrate the lock

implementation with the thread dispatcher data structure

and have lock code manipulate thread queues

Lock implementation #3 (interrupt disable, no

busy-waiting)

Waiting thread gives up processor so that other threads (e.g. the

thread with the lock) can run more quickly. Someone wakes up

thread when the lock is free.

lock () {

 disable interrupts

 if (value == FREE) {

 value = BUSY

 } else {

 add thread to queue of threads waiting for

 this lock

 switch to next runnable thread

 }

 enable interrupts

}

unlock () {

 disable interrupts

 value = FREE

 if (any thread is waiting for this lock) {

 move waiting thread from waiting queue to

 ready queue

 value = BUSY

 }

 enable interrupts

}

CPS110: Landon Cox Page 6 of
20

This is a handoff lock

 Thread calling unlock() gives lock to the waiting thread

 Why have a separate waiting queue? Why not put waiting

thread onto the ready queue?

Interrupt disable/enable pattern

When should lock() re-enable interrupts before calling switch?

Enable interrupts before adding thread to wait queue?

lock () {

 disable interrupts

 …

 if (lock is busy) {

 enable interrupts

 add thread to lock wait queue

 switch to next runnable thread

 }

}

When could this fail?

CPS110: Landon Cox Page 7 of
20

Enable interrupts after adding thread to wait queue, but before

switching to next thread?

lock () {

 disable interrupts

 …

 if (lock is busy) {

 add thread to lock wait queue

 enable interrupts

 switch to next runnable thread

 }

}

But this fails if interrupt happens after thread enable interrupts

 Lock() adds thread to wait queue

 Lock() enables interrupts

 Interrupts causes pre-emption, i.e. switch to another

thread. Pre-emption moves thread to ready queue. Now

thread is on two queues (wait and ready)!

Also, switch is likely to be a critical section

Adding thread to wait queue and switching to next thread must be

atomic

Solution: waiting thread leaves interrupts disabled when it calls

switch. Next thread to run has the responsibility of re-enabling

interrupts before returning to user code. When waiting thread

wakes up, it returns from switch with interrupts disabled (from the

last thread)

Invariant

 All threads promise to have interrupts disabled when they

call switch

 All threads promise to re-enable interrupts after they get

returned from switch

Thread A Thread B

 yield() {

 disable interrupts

 switch

 enable interrupts

}

<user code runs>

lock() {

 disable interrupts

 …

 switch

 back from switch

 enable interrupts

 }

 <user code runs>

 unlock()(move thread

 A to ready queue)

yield () {

 disable interrupts

 switch

 back from switch

 enable interrupts

}

CPS110: Landon Cox Page 8 of
20

Lock implementation #4 (test&set, minimal

busy-waiting)

Can’t implement locks using test&set without some amount of

busy-waiting, but can minimize it

Idea: use busy-waiting only to atomically execute lock code. Give up

CPU if busy.

lock() {

 while (test&set(guard)) {

 }

 if (value == FREE) {

 value = BUSY

 } else {

 Add thread to queue of threads waiting for

 this lock

 switch to next runnable thread

 }

 guard = 0

}

unlock() {

 while (test&set (guard)) {

 }

 value = FREE

 if (any thread is waiting for this lock) {

 move waiting thread from waiting queue to

 ready queue

 value = BUSY

 }

 guard = 0

}

CPS110: Landon Cox Page 9 of
20

Deadlock

Resources

 Something needed by a thread

 A thread waits for resources

 E.g. locks, disk space, memory, CPU

Deadlock

 A circular waiting for resources, leading to the threads

involved not being able to make progress

Example

Thread A Thread B

lock(x) lock(y)

lock(y) lock(x)

… …

unlock(y) unlock(x)

unlock(x) unlock(y)

 Can deadlock occur with this code?

 Will deadlock always occur with this code?

General structure of thread code

 Phase 1. while (not done) {

 acquire some resources

 work

 }

 Phase 2. Release all resources

Assume phase 1 has finite amount of work

CPS110: Landon Cox Page 10 of
20

Dining philosophers

Five philosophers sitting around a round table, 1 chopstick in

between each pair of philosophers (five chopsticks total). Each

philosopher needs two chopsticks to eat.

Algorithm for each philosopher

 Wait for chopstick on right to be free, then

 pick it up

 Wait for chopstick on left to be free, then pick

 it up

 Eat

 Put both chopsticks down

Can this deadlock?

Conditions for Deadlock

Four conditions must be true for deadlock to occur

 Limited resource: not enough resources to serve all threads

simultaneously

 Hold and wait: threads hold resources while waiting to

acquire other resources

 No pre-emption: thread system can’t force thread to give

up resource

 Circular chain of requests

Thread A

Thread B

BBAbB

Resource 2 Resource 1

CPS110: Landon Cox Page 11 of
20

Strategies for handling deadlock

Three general strategies

 Ignore

 Detect and fix

 Prevent

Detect and fix

 Can detect by looking for cycles in the wait-for graph

 How to fix once detected?

Deadlock prevention

Idea is to eliminate one of the four necessary conditions

Increase resources to decrease waiting (this minimizes the chance

of deadlock)

Eliminate hold and wait

 Move resource acquisition to beginning

 Phase 1a. acquire all resources

 Phase 1b. while (not done) {

 acquire some resources

 work

 }

 Phase 2. release all resources

a. Wait until all resources you’ll need are free, then grab them

all at once

CPS110: Landon Cox Page 12 of
20

(or) b. if you find resource busy, release all acquired resources

and go back to beginning

Problems?

Allow pre-emption

 Can pre-empt CPU by saving its state to thread control block

and resuming later

 Can pre-empt memory by swapping out memory to disk and

loading it back later

 Can we pre-empt the holding of a lock?

Eliminate circular chain of requests

CPS110: Landon Cox Page 13 of
20

Banker’s algorithm

Similar to reserving all resources at beginning, but more efficient

State maximum resource needs in advance (but don’t actually
acquire the resources). When thread later tries to acquire a
resource, banker’s algorithm determines when it’s safe to satisfy
the request (and blocks the thread when it’s not safe).

General structure of the code

 Phase 1a. state maximum resources needed

 Phase 1b. while (not done) {

 Acquire some resources

 Work

 }

 Phase 2. Release all resources

Preventing deadlock by requesting all resources at beginning would
block thread in phase 1a above (but phase 1b can proceed without
waiting)

In banker’s algorithm, phase 1a provides the information needed to
determine when it’s safe to satisfy each resource request in phase
1b.

“Safe” means guaranteeing the ability for all threads to finish (no
possibility of deadlock)

CPS110: Landon Cox Page 14 of
20

Example: use banker’s algorithm to model a bank loaning money to

its customers

Bank has $6000. Customers sign up and establish a credit limit

(maximum resources needed). They borrow money in stages (up to

their credit limit). When they’re done, they return all of their

money.

Solution #1: bank gives money when requested, as long as money is

available. Bank must reserve all resources when customer starts

 Ann asks for credit limit of $2000

 Bob asks for credit limit of $4000

 Cat asks for credit limit of $6000

Can bank approve all these credit lines if it promises to give money

upon request is money is available?

Solution #2: bank approves all credit limits, but customer may have

to wait when actually asking for the money

 Ann asks for credit limit of $2000 (bank oks)

 Bob asks for credit limit of $4000 (bank oks)

 Cat asks for credit limit of $6000 (bank oks)

 Ann takes out $1000 (bank has $5000 left)

 Bob takes out $2000 (bank has $3000 left)

 Cat wants to take out $2000. Is this allowed?

Allowed if and only if, after giving the money, there exists some

sequential order of fulfilling all maximum resources (worst-case

analysis)

 If give $2000 to Cat, bank has $1000 left

 Ann can finish even if she takes out her max (another

$1000). When Ann finishes, she returns her money (bank

has $2000).

 After Ann finishes, Bob can take out his max (another

$2000), then finish

 Then Cat can finish, even if she takes out her max (another

$4000)

CPS110: Landon Cox Page 15 of
20

What about this scenario?

 Ann asks for credit limit of $2000 (bank oks)

 Bob asks for credit limit of $4000 (bank oks)

 Cat asks for credit limit of $6000 (bank oks)

 Ann takes out $1000 (bank has $5000 left)

 Bob takes out $2000 (bank has $3000 left)

 Cat wants to take out $2500. Is this allowed?

Banker allows system to over-commit resources without introducing

the possibility of deadlock. Sum of max resource needs of all

current threads can be greater than total resources, as long as

there’s some way for all the threads to finish without getting into

deadlock.

How can we apply the banker’s algorithm to dining philosophers?

Unfortunately, it is difficult to anticipate maximum resources

needed

CPU scheduling

How should one choose the next thread to run? What are the goals

of the CPU scheduler?

Minimize average response time

 Rate at which jobs complete in the system

Maximize throughput of the entire system

 Rate at which jobs complete in the system

Fairness

 Share CPU among thread in some “equitable” manner

CPS110: Landon Cox Page 16 of
20

First-come, first-served (FCFS)

FIFO ordering between jobs

No pre-emption (run until done)

 Thread runs until it calls yield() or blocks on I/O

 No timer interrupts

Pros and cons

 + simple

- Short jobs get stuck behind long jobs

- What about the user’s interactive experience?

Example

 Job A takes 100 seconds

 Job B takes 1 second

Time 0 : Job A arrives and starts

Time 0+ : Job B arrives

Time 100: Job A finishes (response time = 100)

 Job B starts

Time 101: Job B finishes (response time 101)

Average response time = 100.5

Round robin

Goal: improve average response time for short jobs

Solution: periodically pre-empt all jobs (viz. long-running ones)

Is FCFS or round robin “fair”?

Example

 Job A takes 100 seconds

 Job B takes 1 second

 Time slice of 1 second (a job is pre-empted after running for

1 second)

Time 0 : Job A arrives and starts

Time 0+ : Job B arrives

Time 1 : Job A is pre-empted, Job B starts

Time 2 : Job B finishes (response time = 2)

 Job A resumes

Time 101: Job A finishes (response time = 101)

Average response time = 51.5

CPS110: Landon Cox Page 17 of
20

Does round robin always achieve lower average response time than

FCFS?

Pros and cons

+ good for interactive computing

- round robin has more overhead due to context switches

How to choose time slice?

 Big time slice: degrades to FCFS

 Small time slice: more time spent context switching

 Typically a compromise, e.g. 10 milliseconds

 If context switch takes .1 ms, then round robin with 10 ms

time slice wastes 1% of the CPU

STCF (shortest time to completion first)

STCF: run whatever job has the least amount of work to do before it

finishes (or blocks for an I/O)

STCF-P: pre-emptive version of STCF

 If a new job arrives that has less work than the current job

has remaining, then pre-empt the current job in favor of the

new one

Idea is to finish short jobs first

 Improves response time of shorter jobs by a lot

 Doesn’t hurt response time of longer jobs by too much

STCF gives optimal response time among pre-emptive policies (and

non-pre-emptive policies)

I/O

 Is the following job a “short” job or a “long” job?

while (1) {

 use CPU for 1 ms

 use I/O for 10 ms

}

CPS110: Landon Cox Page 18 of
20

Pros and cons

+ Optimal response time

- Unfair. Short jobs can prevent long jobs from ever getting

CPU time (starvation)

- Needs knowledge of future

STCF and STCF-P need knowledge of the future

 It is often hard to predict the future

 How do you find out the future time required by a job?

Example

Job A

 Compute for 1000 seconds

Job B

 Compute for 1000 seconds

Job C

 while (1) {

 use CPU for 1 ms

 use I/O for 10 ms

 }

C can use 91% of the disk by itself. A or B can use 100% of the CPU.

What happens when we run them together?

Goal: keep both CPU and disk busy

FCFS

 If A or B run before C, they prevent C from issuing its disk

I/O for up to 2000 seconds

CPS110: Landon Cox Page 19 of
20

Round robin with 100ms time slice (not to scale)

CA---------B---------CA---------B---------...

|--| |--|

C’s I/O C’s I/O

 Disk is idle most of the time that A and B are running (about

10 ms disk for every 200 ms)

Round robin with 1ms time slice (also not to scale)

CABABABABABCABABABABABC...

|--------| |--------|

C’s I/O C’s I/O

 C runs more often, so it can issue its disk I/O almost as soon

as its last disk I/O is done

 Disk is utilized about 90% of the time

 Little effect on A or B’s performance

 General principle: first start the things that can run in

parallel

 Problem: lots of context switches (+ context switch

overhead)

STCF-P

 Runs C as soon as its disk I/O is done (because it has the

next shortest CPU burst)

CA---------CA---------CA--------- ...

|--------| |--------| |---------|

C’s I/O C’s I/O C’s I/O

CPS110: Landon Cox Page 20 of
20

Real-time scheduling

So far, we’ve focused on average-case analysis (average response

time, throughput)

Sometimes, the right goal is to get each job done before its deadline

(irrelevant how far in advance of the deadline the job completes)

 Video or audio output. E.g. NTSC (National Television

Standards Committee) outputs 1 TV frame every 33ms

 Control of physical systems, e.g. auto assembly, nuclear

power plants

This requires worst-case analysis.

How do we do this in real life?

Earliest deadline first (EDF)

Always run the job that has the earliest deadline (i.e. the deadline

coming up next)

If a new job arrives with an earlier deadline than the currently

running job, pre-empt the running job and start the new one.

EDF is optimal—it will meet all deadlines if it is possible to do so

Example

 job A: takes 15 seconds, deadline is 20 seconds after

entering system

 job B: takes 10 seconds, deadline is 30 seconds after

entering system

 job C: takes 5 seconds, deadline is 10 seconds after entering

system

time--->

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

A +

B +

C +

