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Implementing locks – atomicity in the thread 

library 
 

Concurrent programs use high-level synchronization operations 

 

 

 

 

 

 

Implementing these high-level synchronization operations 

 Used by multiple threads so they need to worry about 

atomicity (e.g. they use data structures shared across 

threads) 

 Can’t use the high-level synchronization operations 

themselves 

 

 

 

Use interrupt disable/enable to ensure 

atomicity 
 

On uni-processor, operation is atomic as long as context switch 

doesn’t occur in middle of the operation 

 How does thread get context switched out? 

 

 

 

 

 Prevent context switches at wrong time by preventing these 

events 

 

 

  

Concurrent program 

High-level synchronization 

(semarphores, locks, monitors)  

Hardware (load/store, interrupt 

enable/disable, test&set)  
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With interrupt disable/enable to ensure atomicity, why do we need 

locks? 

 

 

 User program could call interrupt disable before entering 

critical section and call interrupt enable after leaving critical 

section (and make sure not to call yield in the critical 

section) 

 

 

 

 

 

 

 

 

 

 

 

 

Lock implementation #1 (disable interrupts 

with busy waiting) 
 

lock () { 

  disable interrupts 

  while (value != FREE) { 

    enable interrupts 

    disable interrupts 

  } 

  value = BUSY 

  enable interrupts 

} 

 

unlock () { 

  disable interrupts 

  value = FREE 

  enable interrupts 

} 

 

Why does lock() disable interrupts in the beginning of the function? 
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Why is it ok to disable interrupts in lock()’s critical section (it wasn’t 

ok to disable interrupts while user code was running)? 

 

 

 

Do we need to disable interrupts in unlock()? 

 

 

 

Why does the body of the while loop enable, then disable 

interrupts? 

 

 

 

 

 

 

 

 

Another atomic primitive: read-modify-write 

instructions 
 

Interrupt disable works on a uni-processor by preventing the 

current thread from being switched out. 

But this doesn’t work on a multi-processor 

 Disabling interrupts on one processor doesn’t prevent other 

processors from running 

 Not acceptable (or provided) to modify interrupt disable to 

stop other processors from running 

Could use atomic load/store instructions (remember Too Much Milk 

solution #3) 

Modern processors provide an easier way with atomic read-modify-

write instructions 

 Atomically {reads value from memory into a register, then 

writes new value to that memory location} 
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Test_and_set: atomically writes 1 to a memory location (set) and 

returns the value that used to be there (test) 

Test_and_set(X) { 

  tmp = X 

  X = 1 

  return (tmp) 

} 

 

 Note that only 1 process can see a transition from 0 to 1 

Exchange (x86) 

 Swaps value between register and memory 

 

 

 

 

 

 

 

 

 

 

 

Lock implementation #2 (test&set with busy 

waiting) 
 

(value is initially 0) 

 

lock () { 

  while (test_and_set(value) == 1) { 

  } 

} 

 

unlock () { 

  value = 0 

} 

 

If lock is free (value = 0), test_and_set sets value to 1 and returns 0, 

so the while loop finishes. 

 

If lock is busy (value = 1), test_and_set doesn’t change the value and 

returns 1, so loop continues. 
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Busy Waiting 
 

Problem with lock implementations #1 and #2 

 Waiting thread uses lots of CPU time just checking for the 

lock to become free.  This is called “busy waiting.” 

 Better for thread to go to sleep and let other threads run 

 Strategy for reducing busy-waiting: integrate the lock 

implementation with the thread dispatcher data structure 

and have lock code manipulate thread queues 

 

 

 

 

 

 

 

 

 

 

 

Lock implementation #3 (interrupt disable, no 

busy-waiting) 
 

Waiting thread gives up processor so that other threads (e.g. the 

thread with the lock) can run more quickly.  Someone wakes up 

thread when the lock is free. 

lock () { 

  disable interrupts 

  if (value == FREE) { 

    value = BUSY 

  } else { 

    add thread to queue of threads waiting for 

      this lock 

     

    switch to next runnable thread 

  } 

  enable interrupts 

} 

 

unlock () { 

  disable interrupts 

  value = FREE 

  if (any thread is waiting for this lock) { 

    move waiting thread from waiting queue to 

      ready queue 

    value = BUSY 

  } 

  enable interrupts 

} 
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This is a handoff lock 

 Thread calling unlock() gives lock to the waiting thread 

 

 

 

 

 

 Why have a separate waiting queue? Why not put waiting 

thread onto the ready queue? 

 

 

 

 

 

 

 

 

 

 

Interrupt disable/enable pattern 
 

When should lock() re-enable interrupts before calling switch? 

 

Enable interrupts before adding thread to wait queue? 

lock () { 

  disable interrupts 

  … 

  if (lock is busy) { 

    enable interrupts 

    add thread to lock wait queue 

    switch to next runnable thread 

  } 

} 

 

When could this fail? 
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Enable interrupts after adding thread to wait queue, but before 

switching to next thread? 

 

lock () { 

  disable interrupts 

  … 

  if (lock is busy) { 

    add thread to lock wait queue 

    enable interrupts 

    switch to next runnable thread 

  } 

} 

 

But this fails if interrupt happens after thread enable interrupts 

 Lock() adds thread to wait queue 

 Lock() enables interrupts 

 Interrupts causes pre-emption, i.e. switch to another 

thread.  Pre-emption moves thread to ready queue.  Now 

thread is on two queues (wait and ready)! 

Also, switch is likely to be a critical section 

Adding thread to wait queue and switching to next thread must be 

atomic 

Solution: waiting thread leaves interrupts disabled when it calls 

switch.  Next thread to run has the responsibility of re-enabling 

interrupts before returning to user code.  When waiting thread 

wakes up, it returns from switch with interrupts disabled (from the 

last thread) 

Invariant 

 All threads promise to have interrupts disabled when they 

call switch 

 All threads promise to re-enable interrupts after they get 

returned from switch 

Thread A    Thread B 

 

     yield() { 

       disable interrupts 

       switch 

 

  enable interrupts 

} 

<user code runs> 

lock() { 

  disable interrupts 

  … 

  switch 

       back from switch 

       enable interrupts 

     } 

     <user code runs> 

     unlock()(move thread  

  A to ready queue) 

yield () { 

  disable interrupts 

  switch 

  back from switch 

  enable interrupts 

} 
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Lock implementation #4 (test&set, minimal 

busy-waiting) 
 

Can’t implement locks using test&set without some amount of 

busy-waiting, but can minimize it 

Idea: use busy-waiting only to atomically execute lock code.  Give up 

CPU if busy. 

lock() { 

  while (test&set(guard)) { 

  } 

 

  if (value == FREE) { 

    value = BUSY 

  } else { 

    Add thread to queue of threads waiting for 

      this lock 

 

    switch to next runnable thread 

  } 

  guard = 0 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unlock() { 

  while (test&set (guard)) { 

  } 

 

  value = FREE 

  if (any thread is waiting for this lock) { 

    move waiting thread from waiting queue to 

      ready queue 

    value = BUSY 

  } 

  guard = 0 

} 
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Deadlock 
 

Resources 

 Something needed by a thread 

 A thread waits for resources 

 E.g. locks, disk space, memory, CPU 

Deadlock 

 A circular waiting for resources, leading to the threads 

involved not being able to make progress 

Example 

Thread A    Thread B 

lock(x)    lock(y) 

lock(y)    lock(x) 

…     … 

unlock(y)    unlock(x) 

unlock(x)    unlock(y) 

 

 Can deadlock occur with this code? 

 

 

 Will deadlock always occur with this code? 

 

 

General structure of thread code 

  Phase 1. while (not done) { 

             acquire some resources 

             work 

           } 

  Phase 2. Release all resources 

 

 

Assume phase 1 has finite amount of work 
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Dining philosophers 
 

Five philosophers sitting around a round table, 1 chopstick in 

between each pair of philosophers (five chopsticks total). Each 

philosopher needs two chopsticks to eat. 

 

Algorithm for each philosopher 

  Wait for chopstick on right to be free, then  

    pick it up 

  Wait for chopstick on left to be free, then pick  

    it up 

  Eat 

  Put both chopsticks down 

 

Can this deadlock? 

Conditions for Deadlock 
 

Four conditions must be true for deadlock to occur 

 Limited resource: not enough resources to serve all threads 

simultaneously 

 

 Hold and wait: threads hold resources while waiting to 

acquire other resources 

 

 No pre-emption: thread system can’t force thread to give 

up resource 

 

 Circular chain of requests 

 

 

 

 

 

  

Thread A 

Thread B 

BBAbB 

Resource 2 Resource 1 
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Strategies for handling deadlock 
 

Three general strategies 

 Ignore 

 

 

 

 Detect and fix 

 Prevent 

 

Detect and fix 

 Can detect by looking for cycles in the wait-for graph 

 How to fix once detected? 

 

 

 

 

 

 

Deadlock prevention 
 

Idea is to eliminate one of the four necessary conditions 

Increase resources to decrease waiting (this minimizes the chance 

of deadlock) 

Eliminate hold and wait 

 Move resource acquisition to beginning 

    Phase 1a. acquire all resources 

    Phase 1b. while (not done) { 

                acquire some resources 

           work 

              } 

    Phase 2.  release all resources 

 

a. Wait until all resources you’ll need are free, then grab them 

all at once 
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(or) b.  if you find resource busy, release all acquired resources 

and go back to beginning 

 

 

 

Problems? 

 

 

 

Allow pre-emption 

 Can pre-empt CPU by saving its state to thread control block 

and resuming later 

 

 Can pre-empt memory by swapping out memory to disk and 

loading it back later 

 

 Can we pre-empt the holding of a lock?  

 

 

 

 

Eliminate circular chain of requests 
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Banker’s algorithm 
 

Similar to reserving all resources at beginning, but more efficient 

State maximum resource needs in advance (but don’t actually 
acquire the resources). When thread later tries to acquire a 
resource, banker’s algorithm determines when it’s safe to satisfy 
the request (and blocks the thread when it’s not safe). 
 

General structure of the code 

    Phase 1a. state maximum resources needed 

    Phase 1b. while (not done) { 

                Acquire some resources 

                Work 

              } 

    Phase 2.  Release all resources 

 

 
Preventing deadlock by requesting all resources at beginning would 
block thread in phase 1a above (but phase 1b can proceed without 
waiting)  
 
In banker’s algorithm, phase 1a provides the information needed to 
determine when it’s safe to satisfy each resource  request in phase 
1b. 
 
“Safe” means guaranteeing the ability for all threads to finish (no 
possibility of deadlock) 
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Example: use banker’s algorithm to model a bank loaning money to 

its customers 

Bank has $6000.  Customers sign up and establish a credit limit 

(maximum resources needed).  They borrow money in stages (up to 

their credit limit).  When they’re done, they return all of their 

money. 

Solution #1: bank gives money when requested, as long as money is 

available.  Bank must reserve all resources when customer starts 

    Ann asks for credit limit of $2000 

    Bob asks for credit limit of $4000 

    Cat asks for credit limit of $6000 

 

Can bank approve all these credit lines if it promises to give money 

upon request is money is available? 

 

 

 

 

 

 

 

 

Solution #2: bank approves all credit limits, but customer may have 

to wait when actually asking for the money 

    Ann asks for credit limit of $2000 (bank oks) 

    Bob asks for credit limit of $4000 (bank oks) 

    Cat asks for credit limit of $6000 (bank oks) 

 

    Ann takes out $1000 (bank has $5000 left) 

    Bob takes out $2000 (bank has $3000 left) 

    Cat wants to take out $2000.  Is this allowed? 

 

 

 

Allowed if and only if, after giving the money, there exists some 

sequential order of fulfilling all maximum resources (worst-case 

analysis) 

 If give $2000 to Cat, bank has $1000 left 

 Ann can finish even if she takes out her max (another 

$1000).  When Ann finishes, she returns her money (bank 

has $2000). 

 After Ann finishes, Bob can take out his max (another 

$2000), then finish 

 Then Cat can finish, even if she takes out her max (another 

$4000)  
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What about this scenario? 

    Ann asks for credit limit of $2000 (bank oks) 

    Bob asks for credit limit of $4000 (bank oks) 

    Cat asks for credit limit of $6000 (bank oks) 

 

    Ann takes out $1000 (bank has $5000 left) 

    Bob takes out $2000 (bank has $3000 left) 

    Cat wants to take out $2500.  Is this allowed? 

 

 

Banker allows system to over-commit resources without introducing 

the possibility of deadlock.  Sum of max resource needs of all 

current threads can be greater than total resources, as long as 

there’s some way for all the threads to finish without getting into 

deadlock. 

How can we apply the banker’s algorithm to dining philosophers? 

 

 

 

 

Unfortunately, it is difficult to anticipate maximum resources 

needed 

 

CPU scheduling 
 

How should one choose the next thread to run? What are the goals 

of the CPU scheduler? 

Minimize average response time 

 Rate at which jobs complete in the system 

 

 

Maximize throughput of the entire system 

 Rate at which jobs complete in the system 

 

 

Fairness 

 Share CPU among thread in some “equitable” manner 
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First-come, first-served (FCFS) 
 

FIFO ordering between jobs 

No pre-emption (run until done) 

 Thread runs until it calls yield() or blocks on I/O 

 No timer interrupts 

 

Pros and cons 

 + simple 

- Short jobs get stuck behind long jobs 

- What about the user’s interactive experience? 

Example 

 Job A takes 100 seconds 

 Job B takes  1 second 

Time 0  : Job A arrives and starts 

Time 0+ : Job B arrives 

Time 100: Job A finishes (response time = 100) 

          Job B starts 

Time 101: Job B finishes (response time 101) 

 

Average response time = 100.5 

 

Round robin 
 

Goal: improve average response time for short jobs 

Solution: periodically pre-empt all jobs (viz. long-running ones) 

 

Is FCFS or round robin “fair”? 

 

Example 

 Job A takes 100 seconds 

 Job B takes 1 second 

 Time slice of 1 second (a job is pre-empted after running for 

1 second) 

Time 0  : Job A arrives and starts 

Time 0+ : Job B arrives 

Time 1  : Job A is pre-empted, Job B starts 

Time 2  : Job B finishes (response time = 2) 

          Job A resumes 

Time 101: Job A finishes (response time = 101) 

 

Average response time = 51.5 
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Does round robin always achieve lower average response time than 

FCFS? 

 

 

 

 

Pros and cons 

+ good for interactive computing 

-  round robin has more overhead due to context switches 

 

 

How to choose time slice? 

 Big time slice: degrades to FCFS 

 Small time slice: more time spent context switching 

 

 Typically a compromise, e.g. 10 milliseconds 

 If context switch takes .1 ms, then round robin with 10 ms 

time slice wastes 1% of the CPU 

 

 

STCF (shortest time to completion first) 
 

STCF: run whatever job has the least amount of work to do before it 

finishes (or blocks for an I/O) 

STCF-P: pre-emptive version of STCF 

 If a new job arrives that has less work than the current job 

has remaining, then pre-empt the current job in favor of the 

new one 

Idea is to finish short jobs first 

 Improves response time of shorter jobs by a lot 

 Doesn’t hurt response time of longer jobs by too much 

STCF gives optimal response time among pre-emptive policies (and 

non-pre-emptive policies) 

I/O 

 Is the following job a “short” job or a “long” job? 

while (1) { 

  use CPU for 1 ms 

  use I/O for 10 ms 

} 
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Pros and cons 

+     Optimal response time 

- Unfair.  Short jobs can prevent long jobs from ever getting 

CPU time (starvation) 

- Needs knowledge of future 

 

STCF and STCF-P need knowledge of the future 

 It is often hard to predict the future 

 

 

 

 How do you find out the future time required by a job? 

 

 

 

 

 

 

 

Example 
 

Job A 

  Compute for 1000 seconds 

 

Job B 

  Compute for 1000 seconds 

 

Job C 

  while (1) { 

    use CPU for 1 ms 

    use I/O for 10 ms 

  } 

 

C can use 91% of the disk by itself.  A or B can use 100% of the CPU.  

What happens when we run them together? 

Goal: keep both CPU and disk busy 

FCFS 

 If A or B run before C, they prevent C from issuing its disk 

I/O for up to 2000 seconds 
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Round robin with 100ms time slice (not to scale) 

CA---------B---------CA---------B---------... 

|--|                 |--| 

C’s I/O               C’s I/O 

 

 

 Disk is idle most of the time that A and B are running (about 

10 ms disk for every 200 ms) 

Round robin with 1ms time slice (also not to scale) 

CABABABABABCABABABABABC... 

|--------| |--------| 

C’s I/O    C’s I/O 

 

 C runs more often, so it can issue its disk I/O almost as soon 

as its last disk I/O is done 

 Disk is utilized about 90% of the time 

 Little effect on A or B’s performance 

 General principle: first start the things that can run in 

parallel 

 Problem: lots of context switches (+ context switch 

overhead) 

STCF-P 

 Runs C as soon as its disk I/O is done (because it has the 

next shortest CPU burst) 

 

CA---------CA---------CA--------- ... 

|--------| |--------| |---------| 

C’s I/O    C’s I/O    C’s I/O 
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Real-time scheduling 
 

So far, we’ve focused on average-case analysis (average response 

time, throughput) 

Sometimes, the right goal is to get each job done before its deadline 

(irrelevant how far in advance of the deadline the job completes) 

 Video or audio output. E.g. NTSC (National  Television 

Standards Committee) outputs 1 TV frame every 33ms 

 Control of physical systems, e.g. auto assembly, nuclear 

power plants 

This requires worst-case analysis. 

How do we do this in real life? 

 

 

 

 

 

 

 

Earliest deadline first (EDF) 
 

Always run the job that has the earliest deadline (i.e. the deadline 

coming up next) 

If a new job arrives with an earlier deadline than the currently 

running job, pre-empt the running job and start the new one. 

EDF is optimal—it will meet all deadlines if it is possible to do so 

Example 

 job A: takes 15 seconds, deadline is 20 seconds after 

entering system 

 job B: takes 10 seconds, deadline is 30 seconds after 

entering system 

 job C: takes 5 seconds, deadline is 10 seconds after entering 

system 

 

time---> 

  0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 

A + 

B + 

C + 

 

 

 


