Deterministic Finite Accepter (or Automata)

A DFA = (Q, Σ, δ, q₀, F)

- Q is finite set of states
- Σ is tape (input) alphabet
- q₀ is initial state
- F ⊆ Q is set of final states.
- δ: Q × Σ → Q

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td></td>
</tr>
<tr>
<td>q₁</td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: δ(q₀, 1) =
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
 q = δ(q, s)
s = next symbol to the right on tape
if q ∈ F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

Definition:

$\delta^*(q, \lambda) = q$
$\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

Definition The language accepted by a DFA $M = (Q, \Sigma, \delta, q_0, F)$ is set of all strings on Σ accepted by M. Formally,

$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \}$
Trap State

Example: $L(M) = \{b^n a \mid n > 0\}$

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Example:

$L = \{w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s}\}$

Definition A language is regular iff there exists DFA M s.t. $L=L(M)$.
Chapter 2.2

Nondeterministic Finite Automata (or Accepter)

Definition

An NFA=(Q,Σ,δ,q₀,F)

where

- Q is finite set of states
- Σ is tape (input) alphabet
- q₀ is initial state
- F ⊆ Q is set of final states.
- δ:Q×(Σ∪{λ})→2^Q

Example

\[q₀ \quad q₁ \quad q₂ \quad q₃ \]
\[a \quad a \quad b \quad b \]

Note: In this example \(δ(q₀, a) = \)

\[L= \]

Example

\[L=\{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \]

Definition \(q_j \in δ^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\[δ^*(q₀, ab)= \]

\[δ^*(q₀, aba)= \]

Definition: For an NFA M, \(L(M)=\{w \in Σ^* \mid δ^*(q₀, w) \cap F \neq \emptyset\} \)

The language accepted by nfa M is all strings \(w \) such that there exists a walk labeled \(w \) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

```
  q0  q2
  a
  a
  b
  b
```

Theorem Given an NFA $M_N=(Q_N, \Sigma_N, \delta_N, q_0, F_N)$, then there exists a DFA $M_D=(Q_D, \Sigma_D, \delta_D, q_0, F_D)$ such that $L(M_N) = L(M_D)$.

Proof:

We need to define M_D based on M_N.

$Q_D = \,$

$F_D = \,$

$\delta_D : \,$

Algorithm to construct M_D

1. start state is $\{q_0\} \cup \text{closure}(q_0)$
2. While can add an edge
 (a) Choose a state $A=\{q_i, q_j, \ldots q_k\}$ with missing edge for $a \in \Sigma$
 (b) Compute $B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a)$
 (c) Add state B if it doesn’t exist
 (d) add edge from A to B with label a
3. Identify final states
4. if $\lambda \in L(M_N)$ then make the start state final.
Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
$$

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

$$
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \ 	ext{OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
$$
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace_one_a_with_b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Properties and Proving - Problem 2

Consider the property Truncate_all_preceeding_b's or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).