Bayesian networks
Specifying probability distributions

• Specifying a probability for every atomic event is impractical

• $P(X_1, \ldots, X_n)$ would need to be specified for every combination x_1, \ldots, x_n of values for X_1, \ldots, X_n
 – If there are k possible values per variable…
 – … we need to specify $k^n - 1$ probabilities!

• We have already seen it can be easier to specify probability distributions by using (conditional) independence

• Bayesian networks allow us
 – to specify any distribution,
 – to specify such distributions concisely if there is (conditional) independence, in a natural way
A general approach to specifying probability distributions

- Say the variables are X_1, \ldots, X_n
- $P(X_1, \ldots, X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1,X_2)\ldots P(X_n|X_1, \ldots, X_{n-1})$
- or:
 - $P(X_1, \ldots, X_n) = P(X_n)P(X_{n-1}|X_n)P(X_{n-2}|X_n,X_{n-1})\ldots P(X_1|X_n, \ldots, X_2)$
- Can specify every component
 - For every combination of values for the variables on the right of $|$, specify the probability over the values for the variable on the left
- If every variable can take k values,
 - $P(X_i|X_1, \ldots, X_{i-1})$ requires $(k-1)k^{i-1}$ values
 - $\sum_{i=1}^{n}(k-1)k^{i-1} = \frac{k^n - 1}{k-1}$
- Same as specifying probabilities of all atomic events – of course, because we can specify any distribution!
Graphically representing influences

Diagram with variables X_1, X_2, X_3, and X_4. Arrows indicate the direction of influence between the variables.
Conditional independence to the rescue!

- Problem: $P(X_i|X_1, \ldots, X_{i-1})$ requires us to specify too many values.

- Suppose X_1, \ldots, X_{i-1} partition into two subsets, S and T, so that X_i is conditionally independent from T given S.

 $$P(X_i|X_1, \ldots, X_{i-1}) = P(X_i|S, T) = P(X_i|S)$$

- Requires only $(k-1)k^{|S|}$ values instead of $(k-1)k^{i-1}$ values.
Graphically representing influences

• … if X_4 is conditionally independent from X_2 given X_1 and X_3
Rain and sprinklers example

sprinklers is independent of raining, so no edge between them

raining \ (X)

\[P(X=1) = 0.3 \]

sprinklers \ (Y)

\[P(Y=1) = 0.4 \]

good wet \ (Z)

\[
\begin{align*}
P(Z=1 | X=0, Y=0) &= 0.1 \\
P(Z=1 | X=0, Y=1) &= 0.8 \\
P(Z=1 | X=1, Y=0) &= 0.7 \\
P(Z=1 | X=1, Y=1) &= 0.9
\end{align*}
\]

Each node has a conditional probability table (CPT)
Rigged casino example

P(CR=1) = 1/2

P(D1=1|CR=0) = 1/6
P(D1=5|CR=0) = 1/6
P(D1=1|CR=1) = 3/12
P(D1=5|CR=1) = 1/6

P(D2=1|CR=0) = 1/6
P(D2=5|CR=0) = 1/6
P(D2=1|CR=1) = 3/12
P(D2=5|CR=1) = 1/6

die 2 is conditionally independent of die 1 given casino rigged, so no edge between them
Rigged casino example with poorly chosen order

die 1 and die 2 are not independent

casino rigged

both the dice have relevant information for whether the casino is rigged

need 36 probabilities here!
More elaborate rain and sprinklers example

- $P(+r) = .2$
- $P(+n|r) = .3$
- $P(+n|-r) = .4$
- $P(+s) = .6$
- $P(+g|r,s) = .9$
- $P(+g|r,-s) = .7$
- $P(+g|-r,s) = .8$
- $P(+g|-r,-s) = .2$
- $P(+d|n,+g) = .9$
- $P(+d|n,-g) = .4$
- $P(+d|-n,+g) = .5$
- $P(+d|-n,-g) = .3$
Want to know: \(P(+r|+d) = \frac{P(+r,+d)}{P(+d)} \)

Let’s compute \(P(+r,+d) \)
Inference...

- $P(+r) = 0.2$
- $P(+n|r) = 0.3$
- $P(+n|-r) = 0.4$
- $P(+s) = 0.6$
- $P(+g|r,+s) = 0.9$
- $P(+g|r,-s) = 0.7$
- $P(+g|-r,+s) = 0.8$
- $P(+g|-r,-s) = 0.2$
- $P(+d|n,+g) = 0.9$
- $P(+d|n,-g) = 0.4$
- $P(+d|-n,+g) = 0.5$
- $P(+d|-n,-g) = 0.3$

- $P(+r,+d) = \sum_s \sum_g \sum_n P(+r)P(s)P(n|r)P(g|r,s)P(+d|n,g) = P(+r) \sum_s P(s) \sum_g P(g|r,s) \sum_n P(n|r)P(+d|n,g)$
Variable elimination

- From the factor $\Sigma_n P(n|+r)P(+d|n,g)$ we sum out n to obtain a factor only depending on g

 $[\Sigma_n P(n|+r)P(+d|n,+g)] = P(+n|+r)P(+d|+n,+g) + P(-n|+r)P(+d|-n,+g) = .3*.9+.7*.5 = .62$

 $[\Sigma_n P(n|+r)P(+d|n,-g)] = P(+n|+r)P(+d|+n,-g) + P(-n|+r)P(+d|-n,-g) = .3*.4+.7*.3 = .33$

- Continuing to the left, g will be summed out next, etc. (continued on board)
Elimination order matters

\[P(+r, +d) = \sum_n \sum_s \sum_g P(+r)P(s)P(n|+r)P(g|+r,s)P(+d|n,g) = \]
\[P(+r) \sum_n P(n|+r) \sum_s P(s) \sum_g P(g|+r,s)P(+d|n,g) \]

- Last factor will depend on two variables in this case!
Don’t always need to sum over all variables

- Can drop parts of the network that are irrelevant
- \(P(+r, +s) = P(+r)P(+s) = .6 \times .2 = .12 \)
- \[P(+n, +s) = \sum_r P(r, +n, +s) = \sum_r P(r)P(+n|r)P(+s) = P(+s) \sum_r P(r)P(+n|r) = P(+s)(P(+r)P(+n|r) + P(-r)P(+n|-r)) = .6(\text{.2} \times .3 + \text{.8} \times .4) = .6 \times .38 = .228 \]
- \[P(+d | +n, +g, +s) = P(+d | +n, +g) = .9 \]
Trees are easy

- Choose an extreme variable to eliminate first
- Its probability is “absorbed” by its neighbor
- \[\ldots \sum_{x_4} P(x_4|x_1,x_2) \ldots \sum_{x_5} P(x_5|x_4) = \ldots \sum_{x_4} P(x_4|x_1,x_2)\left[\sum_{x_5} P(x_5|x_4) \right] \ldots \]
Clustering algorithms

- Merge nodes into “meganodes” until we have a tree
 - Then, can apply special-purpose algorithm for trees
- Merged node has values \{+n+g, +n-g, -n+g, -n-g\}
 - Much larger CPT
Logic gates in Bayes nets

- Not everything needs to be random…

AND gate

- $P(+y|+x_1,+x_2) = 1$
- $P(+y|-x_1,+x_2) = 0$
- $P(+y|+x_1,-x_2) = 0$
- $P(+y|-x_1,-x_2) = 0$

OR gate

- $P(+y|+x_1,+x_2) = 1$
- $P(+y|-x_1,+x_2) = 1$
- $P(+y|+x_1,-x_2) = 1$
- $P(+y|-x_1,-x_2) = 0$
Modeling satisfiability as a Bayes Net

• \((+X_1 \text{ OR } -X_2) \text{ AND } (-X_1 \text{ OR } -X_2 \text{ OR } -X_3)\)

\[
P(+x_1) = \frac{1}{2}
\]

\[
P(+x_2) = \frac{1}{2}
\]

\[
P(+x_3) = \frac{1}{2}
\]

\[
P(+c_1|+x_1,+x_2) = 1
\]

\[
P(+c_1|-x_1,+x_2) = 0
\]

\[
P(+c_1|+x_1,-x_2) = 1
\]

\[
P(+c_1|-x_1,-x_2) = 1
\]

\[
P(+c_2|+y,+x_3) = 1
\]

\[
P(+c_2|-y,+x_3) = 0
\]

\[
P(+c_2|+y,-x_3) = 1
\]

\[
P(+c_2|-y,-x_3) = 1
\]

\[
P(+c_1,+c_2) = 1
\]

\[
P(+c_1,-c_2) = 0
\]

\[
P(+c_2,+c_1) = 0
\]

\[
P(+c_2,-c_1) = 0
\]

\[
P(+f|+c_1,+c_2) = 1
\]

\[
P(+f|-c_1,+c_2) = 0
\]

\[
P(+f|+c_1,-c_2) = 0
\]

\[
P(+f|-c_1,-c_2) = 0
\]

• \(P(+f) > 0\) iff formula is satisfiable, so inference is NP-hard

• \(P(+f) = (\text{#satisfying assignments}/2^n)\), so inference is \#P-hard
 (because counting number of satisfying assignments is)
More about conditional independence

- A node is conditionally independent of its non-descendants, given its parents.
- A node is conditionally independent of everything else in the graph, given its parents, children, and children’s parents (its Markov blanket).

![Diagram]

- N is independent of G given R.
- N is not independent of G given R and D.
- N is independent of S given R, G, D.

Note: can’t know for sure that two nodes are not independent: edges may be dummy edges.
General criterion: d-separation

- Sets of variables X and Y are conditionally independent given variables in Z if all paths between X and Y are blocked; a path is blocked if one of the following holds:
 - it contains $U \rightarrow V \rightarrow W$ or $U \leftarrow V \leftarrow W$ or $U \leftarrow V \rightarrow W$, and V is in Z
 - it contains $U \rightarrow V \leftarrow W$, and neither V nor any of its descendants are in Z

- N is independent of G given R
- N is not independent of S given R and D