CPS 170: Artificial Intelligence
http://www.cs.duke.edu/courses/spring09/cps170/

First-Order Logic

Instructor: Vincent Conitzer
Limitations of propositional logic

• So far we studied propositional logic

• Some English statements are hard to model in propositional logic:

• “If your roommate is wet because of rain, your roommate must not be carrying any umbrella”

• Pathetic attempt at modeling this:

• RoommateWetBecauseOfRain => (NOT(RoommateCarryingUmbrella0) AND NOT(RoommateCarryingUmbrella1) AND NOT(RoommateCarryingUmbrella2) AND …)
Problems with propositional logic

• No notion of objects
• No notion of relations among objects
• RoommateCarryingUmbrella0 is instructive to us, suggesting
 – there is an object we call Roommate,
 – there is an object we call Umbrella0,
 – there is a relationship Carrying between these two objects
• Formally, none of this meaning is there
 – Might as well have replaced RoommateCarryingUmbrella0 by P
Elements of first-order logic

- **Objects**: can give these names such as Umbrella0, Person0, John, Earth, ...
- **Relations**: Carrying(. , .), IsAnUmbrella(.)
 - Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)
 - Relations with one object = unary relations = properties
- **Functions**: Roommate(.)
 - Roommate(Person0)
- **Equality**: Roommate(Person0) = Person1
Things to note about functions

• It could be that we have a separate name for Roommate(Person0)
 • E.g., Roommate(Person0) = Person1
• … but we do not need to have such a name

• A function can be applied to any object
 • E.g., Roommate(Umbrella0)
Reasoning about many objects at once

• Variables: x, y, z, … can refer to multiple objects

• New operators “for all” and “there exists”
 – Universal quantifier and existential quantifier

• for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))
 – Completely white objects are never partially black

• there exists x: PartiallyWhite(x) AND PartiallyBlack(x)
 – There exists some object in the world that is partially white and partially black
Practice converting English to first-order logic

• “John has Jane’s umbrella”
• Has(John, Umbrella(Jane))
• “John has an umbrella”
• there exists y: (Has(John, y) AND IsUmbrella(y))
• “Anything that has an umbrella is not wet”
• for all x: ((there exists y: (Has(x, y) AND IsUmbrella(y))) => NOT(IsWet(x)))
• “Any person who has an umbrella is not wet”
• for all x: (IsPerson(x) => ((there exists y: (Has(x, y) AND IsUmbrella(y))) => NOT(IsWet(x))))
More practice converting English to first-order logic

• “John has at least two umbrellas”

• there exists x: (there exists y: (Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND NOT(x=y))

• “John has at most two umbrellas”

• for all x, y, z: ((Has(John, x) AND IsUmbrella(x) AND Has(John, y) AND IsUmbrella(y) AND Has(John, z) AND IsUmbrella(z)) => (x=y OR x=z OR y=z))
Even more practice converting English to first-order logic…

• “Duke’s basketball team defeats any other basketball team”

• for all x: ((IsBasketballTeam(x) AND NOT(x=BasketballTeamOf(Duke))) => Defeats(BasketballTeamOf(Duke), x))

• “Every team defeats some other team”

• for all x: (IsTeam(x) => (there exists y: (IsTeam(y) AND NOT(x=y) AND Defeats(x,y)))))
More realistically…

• “Any basketball team that defeats Duke’s basketball team in one year will be defeated by Duke’s basketball team in a future year”

• for all x,y: (IsBasketballTeam(x) AND IsYear(y) AND DefeatsIn(x, BasketballTeamOf(Duke), y)) => there exists z: (IsYear(z) AND IsLaterThan(z, y) AND DefeatsIn(BasketballTeamOf(Duke), x, z))
Is this a tautology?

• “Property P implies property Q, or property P implies property Q (or both)”

• for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

• (for all x: (P(x) => Q(x)) OR (for all x: (Q(x) => P(x))))
Relationship between universal and existential

- for all x: a
- is equivalent to
- $\neg(\text{there exists } x: \neg a)$
Something we cannot do in first-order logic

• We are not allowed to reason in general about relations and functions

• The following would correspond to higher-order logic (which is more powerful):

 • “If John is Jack’s roommate, then any property of John is also a property of Jack’s roommate”

 • (John=Roommate(Jack)) => for all p: (p(John) => p(Roommate(Jack)))

 • “If a property is inherited by children, then for any thing, if that property is true of it, it must also be true for any child of it”

 • for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) AND p(y)) => p(x))))
Axioms and theorems

- **Axioms**: basic facts about the domain, our “initial” knowledge base
- **Theorems**: statements that are logically derived from axioms
• SUBST replaces one or more variables with something else

• For example:
 – \text{SUBST}\{x/\text{John}\}, \text{IsHealthy}(x) \Rightarrow \text{NOT(HasACold}(x)))\)
gives us
 – IsHealthy(John) \Rightarrow \text{NOT(HasACold}(John))\)
Instantiating quantifiers

• From
• for all x: a
• we can obtain
• \text{SUBST}\{{x/g}\}, a\)

• From
• there exists x: a
• we can obtain
• \text{SUBST}\{{x/k}\}, a\)
• where k is a constant that does not appear elsewhere in the knowledge base (Skolem constant)
• Don’t need original sentence anymore
Instantiating existentials after universals

- for all \(x \): there exists \(y \): IsParentOf(y,x)
- **WRONG**: for all \(x \): IsParentOf(k, x)
- **RIGHT**: for all \(x \): IsParentOf(k(x), x)
- Introduces a new function (Skolem function)
- … again, assuming \(k \) has not been used previously
Generalized modus ponens

• for all \(x \): Loves(John, x)
 – John loves every thing
• for all \(y \): (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))
 – Jane feels appreciated by every thing that loves her
• Can infer from this:
 • FeelsAppreciatedBy(Jane, John)

• Here, we used the substitution \{x/Jane, y/John\}
 – Note we used different variables for the different sentences
• General UNIFY algorithms for finding a good substitution
Keeping things as general as possible in unification

- Consider EdibleByWith
 - e.g., EdibleByWith(Soup, John, Spoon) – John can eat soup with a spoon
- for all x: for all y: EdibleByWith(Bread, x, y)
 - Anything can eat bread with anything
- for all u: for all v: (EdibleByWith(u, v, Spoon) => CanBeServedInBowlTo(u,v))
 - Anything that is edible with a spoon by something can be served in a bowl to that something
- Substitution: \{x/z, y/Spoon, u/Bread, v/z\}
- Gives: for all z: CanBeServedInBowlTo(Bread, z)
- Alternative substitution \{x/John, y/Spoon, u/Bread, v/John\} would only have given CanBeServedInBowlTo(Bread, John), which is not as general
Resolution for first-order logic

- for all \(x\): (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))
 - John loves everything he knows, with the possible exception of mean things

- for all \(y\): (Loves(Jane, y) OR Knows(y, Jane))
 - Jane loves everything that does not know her

- What can we unify? What can we conclude?

- Use the substitution: \(\{x/Jane, y/John\}\)

- Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)

- Complete (i.e., if not satisfiable, will find a proof of this), if we can remove literals that are duplicates after unification
 - Also need to put everything in canonical form first
Notes on inference in first-order logic

- Deciding whether a sentence is entailed is semidecidable: there are algorithms that will eventually produce a proof of any entailed sentence
- It is not decidable: we cannot always conclude that a sentence is not entailed
Extreme informal statement of
Gödel’s Incompleteness Theorem

- First-order logic is not rich enough to model basic arithmetic
- For any consistent system of axioms that is rich enough to capture basic arithmetic (in particular, mathematical induction), there exist true sentences that cannot be proved from those axioms
A more challenging exercise

• Suppose:
 – There are exactly 3 objects in the world,
 – If x is the spouse of y, then y is the spouse of x (spouse is a function, i.e., everything has a spouse)

• Prove:
 – Something is its own spouse
More challenging exercise

• there exist x, y, z: \((\neg(x=y) \land \neg(x=z) \land \neg(y=z)) \)

• for all w, x, y, z: \((w=x \lor w=y \lor w=z \lor x=y \lor x=z \lor y=z) \)

• for all x, y: \(((\text{Spouse}(x)=y) \Rightarrow (\text{Spouse}(y)=x)) \)

• for all x, y: \(((\text{Spouse}(x)=y) \Rightarrow \neg(x=y)) \) (for the sake of contradiction)

• Try to do this on the board…
Umbrellas in first-order logic

• You know the following things:
 – You have exactly one other person living in your house, who is wet
 – If a person is wet, it is because of the rain, the sprinklers, or both
 – If a person is wet because of the sprinklers, the sprinklers must be on
 – If a person is wet because of rain, that person must not be carrying any umbrella
 – There is an umbrella that “lives in” your house, which is not in its house
 – An umbrella that is not in its house must be carried by some person who lives in that house
 – You are not carrying any umbrella

• Can you conclude that the sprinklers are on?
Theorem prover on the web

• http://www.spass-prover.org/webspass/index.html (use -DocProof option)
• begin_problem(TinyProblem).
• list_of_descriptions.
• name({*TinyProblem*}).
• author({*Vincent Conitzer*}).
• status(unknown).
• description({*Just a test*}).
• end_of_list.
• list_of_symbols.
 • predicates[(F,1),(G,1)].
• end_of_list.
• list_of_formulae(axioms).
 • formula(exists([U],F(U))).
 • formula(forall([V],implies(F(V),G(V)))).
• end_of_list.
• list_of_formulae(conjectures).
 • formula(exists([W],G(W))).
• end_of_list.
• end_problem.
Theorem prover on the web...

- begin_problem(ThreeSpouses).
- list_of_descriptions.
- name({'ThreeSpouses'}).
- author({'Vincent Conitzer'}).
- status(unknown).
- description({'Three Spouses'}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
 formula(exists([X],exists([Y],exists([Z],and(not(equal(X,Y)),and(not(equal(X,Z)),not(equal(Y,Z))))))).
 formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
 formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
 formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.
Theorem prover on the web...

- begin_problem(TwoOrThreeSpouses).
- list_of_descriptions.
- name({*TwoOrThreeSpouses*}).
- author({*Vincent Conitzer*}).
- status(unknown).
- description({*TwoOrThreeSpouses*}).
- end_of_list.
- list_of_symbols.
- functions[spouse].
- end_of_list.
- list_of_formulae(axioms).
 - formula(exists([X],exists([Y],not(equal(X,Y))))).
 - formula(forall([W],forall([X],forall([Y],forall([Z],or(equal(W,X),or(equal(W,Y),or(equal(W,Z),or(equal(X,Y),or(equal(X,Z),equal(Y,Z))))))))))).
 - formula(forall([X],forall([Y],implies(equal(spouse(X),Y),equal(spouse(Y),X))))).
- end_of_list.
- list_of_formulae(conjectures).
 - formula(exists([X],equal(spouse(X),X))).
- end_of_list.
- end_problem.
Theorem prover on the web...

begin_problem(Umbrellas).
list_of_descriptions.
name("Umbrellas").
author("CPS270").
status(unknown).
description("Umbrellas").
end_of_list.

list_of_symbols.
functions[[House,1],[You,0]].
predicates[[Person,1],[Wet,1],[WetDueToR,1],[WetDueToS,1],[SprinklersOn,0],[Umbrella,1],[Carrying,2],[NotAtHome,1]].
end_of_list.

list_of_formulae(axioms).
formula(forall([X],forall([Y],implies(and(Person(X),and(Person(Y),and(not(equal(X,You)),and(not(equal(Y,You)),and(equal(House(X),House(You)),equal(House(Y),House(You)))))),equal(X,Y))))).
formula(exists([X],and(Person(X),and(equal(House(You),House(X)),and(not(equal(X,You)),Wet(X)))))�).
formula(forall([X],implies(and(Person(X),Wet(X)),or(WetDueToR(X),WetDueToS(X)))))�.
formula(forall([X],implies(and(Person(X),WetDueToR(X)),SprinklersOn)))�.
formula(forall([X],implies(and(Person(X),WetDueToR(X)),forall([Y],implies(Umbrella(Y),not(Carrying(X,Y)))))))�.
formula(exists([X],and(Umbrella(X),and(equal(House(X),House(You)),NotAtHome(X)))))�.
formula(forall([X],implies(Umbrella(X),not(Carrying(You,X)))))�.
end_of_list.

list_of_formulae(conjectures).
formula(SprinklersOn).
end_of_list.
end_problem.
Applications

• Some serious novel mathematical results proved

• Verification of hardware and software
 – Prove outputs satisfy required properties for all inputs

• Synthesis of hardware and software
 – Try to prove that there exists a program satisfying such and such properties, in a constructive way

• Also: contributions to planning (up next)