CPS 170: Artificial Intelligence

http://www.cs.duke.edu/courses/spring09(cps170/

Markov decision processes,
POMDPs

Instructor: Vincent Conitzer
Warmup: a Markov process with rewards

• We derive some reward R from the weather each day, but cannot influence it.

• How much utility can we expect in the long run?
 – Depends on discount factor δ
 – Depends on initial state
A key equation

- **Conditional expectation:**
 \[E(X \mid Y=y) = \sum_x x \cdot P(X=x \mid Y=y) \]

- **Let** \(P(s, s') = P(S_{t+1}=s' \mid S_t=s) \)

- **Let** \(v(s) \) be the (long-term) expected utility from being in state \(s \) now
 \[v(s) = E\left(\sum_{t=0}^{\infty} \delta^t R(S_t) \mid S_0=s \right) = \]
 \[R(s) + \sum_s P(s, s') E\left(\sum_{t=1}^{\infty} \delta^t R(S_t) \mid S_1=s' \right) \]

- **But:** \(E\left(\sum_{t=1}^{\infty} \delta^t R(S_t) \mid S_1=s' \right) = \)
 \[\delta E\left(\sum_{t=0}^{\infty} \delta^t R(S_t) \mid S_0=s' \right) = \delta v(s') \]

- **We get:** \(v(s) = R(s) + \delta \sum_s P(s, s') v(s') \)
Figuring out long-term rewards

- Let $v(s)$ be the (long-term) expected utility from being in state s now
- Let $P(s, s')$ be the transition probability from s to s'
- We must have: for all s,

 $$v(s) = R(s) + \delta \sum_{s'} P(s, s') v(s')$$

- E.g., $v(c) = 8 + \delta (.4v(s) + .3v(c) + .3v(r))$
- Solve system of linear equations to obtain values for all states
Iteratively updating values

• If we do not want to solve system of equations…
 – E.g., too many states
• … can iteratively update values until convergence
• $v_i(s)$ is value estimate after i iterations
• $v_i(s) = R(s) + \delta \sum_{s'} P(s, s') v_{i-1}(s')$
• Will converge to right values
• If we initialize $v_0 = 0$ everywhere, then $v_i(s)$ is expected utility with only i steps left (finite horizon)
 – Dynamic program from the future to the present
 – Shows why we get convergence: due to discounting far future does not contribute much
Markov decision process (MDP)

- Like a Markov process, except every round we make a decision
- Transition probabilities depend on actions taken
 \[P(S_{t+1} = s' \mid S_t = s, A_t = a) = P(s, a, s') \]
- Rewards for every state, action pair
 \[R(S_t = s, A_t = a) = R(s, a) \]
 - Sometimes people just use \(R(s) \); \(R(s, a) \) little more convenient sometimes
- Discount factor \(\delta \)
Example MDP

- Machine can be in one of three states: good, deteriorating, broken
- Can take two actions: maintain, ignore
Policies

• No time period is different from the others
• Optimal thing to do in state s should not depend on time period
 – … because of infinite horizon
 – With finite horizon, don’t want to maintain machine in last period
• A policy is a function π from states to actions
• Example policy: π (good shape) = ignore, π (deteriorating) = ignore, π (broken) = maintain
Evaluating a policy

• Key observation: $\text{MDP} + \text{policy} = \text{Markov process with rewards}$

• Already know how to evaluate Markov process with rewards: system of linear equations

• Gives algorithm for finding optimal policy: try every possible policy, evaluate
 – Terribly inefficient
Bellman equation

- Suppose you are in state s, and you play optimally from there on.
- This leads to expected value $v^*(s)$.
- **Bellman equation:**
 \[v^*(s) = \max_a [R(s, a) + \delta \sum_{s'} P(s, a, s') v^*(s')] \]
- Given v^*, finding optimal policy is easy.
Value iteration algorithm for finding optimal policy

• Iteratively update values for states using Bellman equation
• $v_i(s)$ is our estimate of value of state s after i updates
• $v_{i+1}(s) = \max_a \left[R(s, a) + \delta \sum s', P(s, a, s') v_i(s') \right]$
• Will converge
• If we initialize $v_0=0$ everywhere, then $v_i(s)$ is optimal expected utility with only i steps left (finite horizon)
 – Again, dynamic program from the future to the present
Value iteration example, $\delta = .9$

- $v_0(G) = v_0(D) = v_0(B) = 0$
- $v_1(G) = \max\{R(G,i) + \delta \sum s' P(G, i, s') v_0(s'), R(G,m) + \delta \sum s' P(G, m, s') v_0(s')\} = \max\{2,1\} = 2$;
- Similarly, $v_1(D)=\max\{2,1\} = 2$, $v_1(B) = \max\{0,-1\} = 0$
- $v_2(G) = \max\{R(G,i) + \delta \sum s' P(G, i, s') v_1(s'), R(G,m) + \delta \sum s' P(G, m, s') v_1(s')\} = \max\{2 + .9(.5v_1(G)+.5v_1(D)), 1 + .9(1v_1(G))\} = 3.8$;
- $v_2(D) = \max\{2 + .9(.5*2 + .5*0), 1 + .9(.9*2 + .1*2)\} = 2.9$
- $v_2(B) = \max\{0 + .9(1*0), -1 + .9(.8*0 + .2*2)\} = 0$
- Value for each state (and action at each state) will converge
Policy iteration algorithm for finding optimal policy

- Easy to compute values given a policy
 - No max operator
- Alternate between evaluating policy and updating policy:
 - Solve for function v_i based on π_i
 - $\pi_{i+1}(s) = \arg \max_a [R(s, a) + \delta \sum_{s'} P(s, a, s') v_i(s')]$
- Will converge
Policy iteration example, $\delta = .9$

- Initial policy π_0: always maintain the machine
- Since we always maintain, the value equations become:

 $v_0(G) = 1 + .9v_0(G); v_0(D) = 1 + .9(\cdot .9v_0(G) + .1v_0(D)); v_0(B) = -1 + .9(\cdot .2v_0(G) + .8v_0(B))$

- Solving gives: $v_0(G) = 10, v_0(D)=10, v_0(B) = 2.9$
- Given these values, expected value for ignoring at G is $2 + .9(\cdot .5*10+.5*10)=11$, expected value for maintaining at G is $1 + .9*10 = 10$, so ignoring is better;
- For D, ignore gives $2 + .9(\cdot 5*10+.5*2.9) = 7.8$, maintain gives $1 + .9(\cdot 9*10+1*10) = 10$, so maintaining is better;
- For B, ignore gives $0 + .9*2.9$, maintain gives $-1 + .9(\cdot 2*10+.8*2.9) = 2.9$, so maintaining is better;
- So, the new policy π_1 is to maintain the machine in the deteriorating and broken states only; solve for the values with π_1, etc. until policy stops changing
Mixing things up

• Do not need to update every state every time
 – Makes sense to focus on states where we will spend most of our time

• In policy iteration, may not make sense to compute state values exactly
 – Will soon change policy anyway
 – Just use some value iteration updates (with fixed policy, as we did earlier)

• Being flexible leads to faster solutions
Linear programming approach

- If only
 \[v^*(s) = \max_a R(s, a) + \delta \sum_{s'} P(s, s', a) v^*(s') \]
 were linear in the \(v^*(s) \)...

- But we can do it as follows:

 \begin{align*}
 &\text{Minimize } \sum_s v(s) \\
 &\text{Subject to, for all } s \text{ and } a, \\
 &v(s) \geq R(s, a) + \delta \sum_{s'} P(s, s', a) v(s')
 \end{align*}

- Solver will try to push down the \(v(s) \) as far as possible, so that constraints are tight for optimal actions
Partially observable Markov decision processes (POMDPs)

- Markov process + partial observability = HMM
- Markov process + actions = MDP
- Markov process + partial observability + actions = HMM + actions = MDP + partial observability = POMDP

<table>
<thead>
<tr>
<th></th>
<th>full observability</th>
<th>partial observability</th>
</tr>
</thead>
<tbody>
<tr>
<td>no actions</td>
<td>Markov process</td>
<td>HMM</td>
</tr>
<tr>
<td>actions</td>
<td>MDP</td>
<td>POMDP</td>
</tr>
</tbody>
</table>
Example POMDP

- Need to specify observations
- E.g., does machine fail on a single job?
- $\Pr(\text{fail} \mid \text{good shape}) = .1$, $\Pr(\text{fail} \mid \text{deteriorating}) = .2$, $\Pr(\text{fail} \mid \text{broken}) = .9$
 - Can also let probabilities depend on action taken
Optimal policies in POMDPs

• Cannot simply use $\pi(s)$ because we do not know s

• We can maintain a probability distribution over s:

$$P(S_t \mid A_1 = a_1, O_1 = o_1, \ldots, A_{t-1} = a_{t-1}, O_{t-1} = o_{t-1})$$

• This gives a belief state b where $b(s)$ is our current probability for s

• Key observation: *policy only needs to depend on* b, $\pi(b)$
Solving a POMDP as an MDP on belief states

• If we think of the belief state as the state, then the state is observable and we have an MDP

\[(.3, .4, .3) \]

- observe failure
- maintain
- observe success

\[(.5, .3, .2) \]

- observe success
- observe failure
- ignore

\[(.2, .2, .6) \]

\[(.4, .2, .2) \]

\[(.6, .3, .1) \]

disclaimer: did not actually calculate these numbers...

Reward for an action from a state = expected reward given belief state

• Now have a large, continuous belief state...

• Much more difficult