More search: When the path to the solution doesn’t matter

Instructor: Vincent Conitzer
Search where the path doesn’t matter

• So far, looked at problems where the path was the solution
 – Traveling on a graph
 – Eights puzzle

• However, in many problems, we just want to find a goal state
 – Doesn’t matter how we get there
Queens puzzle

• Place eight queens on a chessboard so that no two attack each other
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing additional queen on the board; **goal**: eight queens placed

How big is this tree?
How many leaves?
What if they were rooks?
Search formulation of the queens puzzle

- **Successors**: all valid ways of placing a queen in the next column; **goal**: eight queens placed

Search tree size?

What if they were rooks?

What kind of search is best?
Constraint satisfaction problems (CSPs)

- Defined by:
 - A set of variables x_1, x_2, \ldots, x_n
 - A domain D_i for each variable x_i
 - Constraints c_1, c_2, \ldots, c_m

- A constraint is specified by
 - A subset (often, two) of the variables
 - All the allowable joint assignments to those variables

- Goal: find a **complete, consistent** assignment

- Queens problem: (other examples in next slides)
 - x_i in {1, ..., 8} indicates in which row in the ith column to place a queen
 - For example, constraint on x_1 and x_2: {(1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (2,4), (2,5), ..., (3,1), (3,5), ...}
Meeting scheduling

- Meetings A, B, C, … need to be scheduled on M, Tu, W, Th, F
- A and B cannot be scheduled on the same day
- B needs to be scheduled at least two days before C
- C cannot be scheduled on Th or F
- Etc.
- How do we model this as a CSP?
Graph coloring

- Fixed number of colors; no two adjacent nodes can share a color

```
  red
 /   \
A-----B-----C
  \
  red
```
Satisfiability

• Formula in conjunctive normal form:

\[(x_1 \lor x_2 \lor \neg(x_4)) \land (\neg(x_2) \lor \neg(x_3)) \land \ldots\]

– Label each variable \(x_j\) as true or false so that the formula becomes true

Constraint hypergraph:
each hyperedge represents a constraint
Cryptarithmetic puzzles

\[\begin{array}{c}
T \ W \ O \\
T \ W \ O \\
\hline
F \ O \ U \ R \\
\end{array} \]

E.g., setting \(F = 1, \ O = 4, \ R = 8, \ T = 7, \ W = 3, \ U = 6 \) gives \(734+734=1468 \)
Cryptarithmetic puzzles…

T W O

T W O +

F O U R

Trick: introduce **auxiliary** variables X, Y

$O + O = 10X + R$

$W + W + X = 10Y + U$

$T + T + Y = 10F + O$

also need pairwise constraints between original variables if they are supposed to be different

What would the search tree look like?
Generic approaches to solving CSPs

- State: some variables assigned, others not assigned
- Naïve successors definition: any way of assigning a value to an unassigned variable results in a successor
 - Can check for consistency when expanding
 - How many leaves do we get in the worst case?
- CSPs satisfy **commutativity**: order in which actions applied does not matter
- Better idea: only consider assignments for a single variable at a time
 - How many leaves?
Choice of variable to branch on is still flexible!

- Do not always need to choose same variable at same level
- Each of variables A, B, C takes values in \{0,1\}

Can you prove that this never increases the number of leaves?
A generic recursive search algorithm

(assignment is a partial assignment)

- **Search**(assignment, constraints)
- If assignment is complete, return it
- Choose an unassigned variable x
- For every value v in x’s domain, if setting x to v in assignment does not violate constraints:
 - Set x to v in assignment
 - result := Search(assignment, constraints)
 - If result != failure return result
 - Unassign x in assignment
- Return failure
Keeping track of remaining possible values

• For every variable, keep track of which values are still possible

only one possibility for last column; might as well fill in

now only one left for other two columns

done! (no real branching needed!)

• General heuristic: branch on variable with fewest values remaining
Arc consistency

• Take two variables connected by a constraint
• Is it true that for **every** remaining value d of the first variable, there exists **some** value d' of the other variable so that the constraint is satisfied?
 – If so, we say the arc from the first to the second variable is consistent
 – If not, can remove the value d

• General concept: **constraint propagation**

Consider cryptarithmetic puzzle again...

Is the arc from the fifth to the eighth column consistent?
What about the arc from the eighth to the fifth?
An example where arc consistency fails

• $A = B$, $B = C$, $C \neq A$ – obviously inconsistent

 – ~ Moebius band

• However, arc consistency cannot eliminate anything
Tree-structured constraint graphs

- Suppose we only have pairwise constraints and the graph is a tree (or forest = multiple disjoint trees)

- Dynamic program for solving this (linear in #variables):
 - Starting from the leaves and going up, for each node x, compute all the values for x such that the subtree rooted at x can be solved
 - Equivalently: apply arc consistency from each parent to its children, starting from the bottom
 - If no domain becomes empty, once we reach the top, easy to fill in solution
Example: graph coloring with limited set of colors per node

- Stage 1: moving upward, cross out the values that cannot work with the subtree below that node
- Stage 2: if a value remains at the root, there is a solution: go downward to pick a solution
A different approach: optimization

• Let’s say every way of placing 8 queens on a board, one per column, is feasible

• Now we introduce an objective: minimize the number of pairs of queens that attack each other
 – More generally, minimize the number of violated constraints

• Pure optimization
Local search: hill climbing

- Start with a complete state
- Move to successor with best (or at least better) objective value
 - Successor: move one queen within its column

- Local search can get stuck in a local optimum

4 attacking pairs 3 attacking pairs 2 attacking pairs

no more improvements

local optimum

global optimum (also a local optimum)
Avoiding getting stuck with local search

• Random restarts: if your hill-climbing search fails (or returns a result that may not be optimal), restart at a random point in the search space
 – Not always easy to generate a random state
 – Will *eventually* succeed (why?)

• Simulated annealing:
 – Generate a random successor (possibly worse than current state)
 – Move to that successor with some probability that is sharply decreasing in the badness of the state
 – Also, over time, as the “temperature decreases,” probability of bad moves goes down
Constraint optimization

• Like a CSP, but with an objective
 – Example: no two queens can be in the same row or column (hard constraint), minimize number of pairs of queens attacking each other diagonally (objective)

• Can use all our techniques from before: heuristics, A*, IDA*, …

• Also popular: depth-first branch-and-bound
 – Like depth-first search, except do not stop when first feasible solution found; keep track of best solution so far
 – Given admissible heuristic, do not need to explore nodes that are worse than best solution found so far
Minimize \#violated diagonal constraints

- **Cost of a node**: \#violated diagonal constraints so far

- **No heuristic**
 (matter of definition; could just as well say that violated constraints so far is the heuristic and interior nodes have no cost)

Depth first branch and bound will find a suboptimal solution here first (no way to tell at this point this is worse than right node)

A* (=uniform cost here), IDA* (=iterative lengthening here) will never explore this node

Optimal solution is down here (cost 0)
Linear programs: example

- We make reproductions of two paintings

\[
\begin{align*}
\text{maximize } & \quad 3x + 2y \\
\text{subject to } & \quad 4x + 2y \leq 16 \\
& \quad x + 2y \leq 8 \\
& \quad x + y \leq 5 \\
& \quad x \geq 0 \\
& \quad y \geq 0
\end{align*}
\]

- Painting 1 sells for $30, painting 2 sells for $20
- Painting 1 requires 4 units of blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red
- We have 16 units blue, 8 green, 5 red
Solving the linear program graphically

\[
\begin{align*}
\text{maximize} & \quad 3x + 2y \\
\text{subject to} & \\
4x + 2y & \leq 16 \\
x + 2y & \leq 8 \\
x + y & \leq 5 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]

optimal solution: \(x=3, y=2\)
Modified LP

maximize \[3x + 2y \]

subject to

\[4x + 2y \leq 15 \]
\[x + 2y \leq 8 \]
\[x + y \leq 5 \]
\[x \geq 0 \]
\[y \geq 0 \]

Optimal solution: \(x = 2.5, y = 2.5 \)

Solution value = \(7.5 + 5 = 12.5 \)

Half paintings?
Integer (linear) program

\[
\begin{align*}
\text{maximize} \quad & 3x + 2y \\
\text{subject to} \quad & 4x + 2y \leq 15 \\
& x + 2y \leq 8 \\
& x + y \leq 5 \\
& x \geq 0, \text{ integer} \\
& y \geq 0, \text{ integer}
\end{align*}
\]

optimal LP solution: \(x=2.5, y=2.5\) (objective 12.5)

optimal IP solution: \(x=2, y=3\) (objective 12)
Mixed integer (linear) program

\[\text{maximize } 3x + 2y \]
\[\text{subject to } \]
\[4x + 2y \leq 15 \]
\[x + 2y \leq 8 \]
\[x + y \leq 5 \]
\[x \geq 0 \]
\[y \geq 0, \text{ integer} \]

optimal LP solution: \(x=2.5, \ y=2.5 \) (objective 12.5)

optimal IP solution: \(x=2, \ y=3 \) (objective 12)

optimal MIP solution: \(x=2.75, \ y=2 \) (objective 12.25)
Solving linear/integer programs

• Linear programs can be solved efficiently
 – Simplex, ellipsoid, interior point methods…

• (Mixed) integer programs are NP-hard to solve
 – Quite easy to model many standard NP-complete problems as integer programs (try it!)
 – Search type algorithms such as branch and bound

• Standard packages for solving these
 – GNU Linear Programming Kit, CPLEX, …

• LP relaxation of (M)IP: remove integrality constraints
 – Gives upper bound on MIP (~admissible heuristic)
Graph coloring as an integer program

• Let’s say $x_{B,green}$ is 1 if B is colored green, 0 otherwise
• Must have $0 \leq x_{B,green} \leq 1$, $x_{B,green}$ integer
 – shorthand: $x_{B,green}$ in \{0,1\}
• Constraint that B and C can’t both be green: $x_{B,green} + x_{C,green} \leq 1$
• Etc.
• Solving integer programs is at least as hard as graph coloring, hence NP-hard (we have reduced graph coloring to IP)
Satisfiability as an integer program

\((x_1 \text{ OR } x_2 \text{ OR NOT}(x_4)) \text{ AND } (\text{NOT}(x_2) \text{ OR NOT}(x_3)) \text{ AND} \ldots\)

becomes

for all \(x_j, 0 \leq x_j \leq 1, x_j \text{ integer (shorthand: } x_j \text{ in } \{0,1\})\)

\(x_1 + x_2 + (1-x_4) \geq 1\)

\((1-x_2) + (1-x_3) \geq 1\)

\ldots\)

Solving integer programs is at least as hard as satisfiability, hence NP-hard (we have \textbf{reduced} SAT to IP)

Try modeling other NP-hard problems as (M)IP!
Solving the integer program with DFS branch and bound

trick: for integer x and k, either x ≤ k or x ≥ k+1

maximize $3x + 2y$
subject to
$4x + 2y ≤ 15$
$x + 2y ≤ 8$
$x + y ≤ 5$
x ≥ 3

LP solution: $x=3$, $y=1.5$, obj = 12

maximize $3x + 2y$
subject to
$4x + 2y ≤ 15$
$x + 2y ≤ 8$
$x + y ≤ 5$
x ≥ 3
y ≥ 2

LP solution: infeasible

maximize $3x + 2y$
subject to
$4x + 2y ≤ 15$
$x + 2y ≤ 8$
$x + y ≤ 5$
x ≥ 3
y ≤ 1

LP solution: $x=3$, $y=1$, obj = 11

LP solution: $x=3.25$, $y=1$, obj = 11.75
if LP solution is integral, we are done
Again with a more fortunate choice

\[
\begin{align*}
\text{maximize } & \quad 3x + 2y \\
\text{subject to } & \quad 4x + 2y \leq 15 \\
& \quad x + 2y \leq 8 \\
& \quad x + y \leq 5 \\
& \quad x \geq 3
\end{align*}
\]

LP solution: \(x=3, y=1.5, \text{ obj } = 12\)

\[
\begin{align*}
\text{maximize } & \quad 3x + 2y \\
\text{subject to } & \quad 4x + 2y \leq 15 \\
& \quad x + 2y \leq 8 \\
& \quad x + y \leq 5 \\
& \quad x \leq 2
\end{align*}
\]

LP solution: \(x=2, y=3, \text{ obj } = 12\)

\[
\begin{align*}
\text{LP solution: } & \quad x=2.5, y=2.5, \text{ obj } = 12.5
\end{align*}
\]

done!