CPS 170: Artificial Intelligence

http://www.cs.duke.edu/courses/spring09(cps170/

Search

Instructor: Vincent Conitzer
Search

• We have some actions that can change the state of the world
 – Change resulting from an action perfectly predictable

• Try to come up with a sequence of actions that will lead us to a goal state
 – May want to minimize number of actions
 – More generally, may want to minimize total cost of actions

• Do not need to execute actions in real life while searching for solution!
 – Everything perfectly predictable anyway
A simple example: traveling on a graph

start state

goal state
Searching for a solution

start state

A

B

C

D

F goal state
search tree nodes and states are not the same thing!
Full search tree

- state = A, cost = 0
- state = B, cost = 3
- state = D, cost = 3
- state = C, cost = 5
- state = F, cost = 12
- state = A, cost = 7
- state = E, cost = 7
- state = F, cost = 11

Goal state!
Changing the goal: want to visit all vertices on the graph

need a different definition of a state
“currently at A, also visited B, C already”
large number of states: \(n \times 2^{n-1} \)
could turn these into a graph, but…
Full search tree

What would happen if the goal were to visit every location twice?
Key concepts in search

- **Set of states** that we can be in
 - Including an **initial state**…
 - … and **goal states** (equivalently, a **goal test**)

- For every state, a set of **actions** that we can take
 - Each action results in a new state
 - Typically defined by **successor function**
 - Given a state, produces all states that can be reached from it

- **Cost function** that determines the cost of each action (or **path** = sequence of actions)

- **Solution**: path from initial state to a goal state
 - **Optimal solution**: solution with minimal cost
8-puzzle

\[\begin{array}{ccc}
1 & 4 & 7 \\
5 & 2 & 8 \\
3 & 6 & _
\end{array}\]

\[\begin{array}{ccc}
1 & 4 & 7 \\
5 & 2 & 8 \\
3 & 6 & _
\end{array}\]

goal state
8-puzzle
Generic search algorithm

- **Fringe** = set of nodes *generated* but not *expanded*
 = nodes we know we still have to explore

- \(fringe := \{\text{node corresponding to initial state}\}\)

- **loop:**
 - if fringe empty, declare failure
 - choose and remove a node \(v\) from fringe
 - check if \(v\)'s state \(s\) is a goal state; if so, declare success
 - if not, expand \(v\), insert resulting nodes into fringe

- Key question in search: *Which of the generated nodes do we expand next?*
Uninformed search

- Uninformed search: given a state, we only know whether it is a goal state or not
- Cannot say one nongoal state looks better than another nongoal state
- Can only traverse state space blindly in hope of somehow hitting a goal state at some point
 - Also called blind search
 - Blind does not imply unsystematic!
Breadth-first search
Properties of breadth-first search

• Nodes are expanded in the same order in which they are generated
 – Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is complete: if a solution exists, one will be found

• BFS finds a shallowest solution
 – Not necessarily an optimal solution

• If every node has b successors (the branching factor), first solution is at depth d, then fringe size will be at least b^d at some point
 – This much space (and time) required 😞
Depth-first search
Implementing depth-first search

• Fringe can be maintained as a **Last-In-First-Out (LIFO)** queue (aka. a **stack**)

• Also easy to implement recursively:

 • DFS(node)

 – If goal(node) return solution(node);

 – For each successor of node

 • Return DFS(successor) unless it is **failure**;

 – Return **failure**;
Properties of depth-first search

- Not complete (might cycle through nongoal states)
- If solution found, generally not optimal/shallowest
- If every node has b successors (the branching factor), and we search to at most depth m, fringe is at most b^m
 - Much better space requirement 😊
 - Actually, generally don’t even need to store all of fringe

Time: still need to look at every node
 - $b^m + b^{m-1} + \ldots + 1$ (for $b>1$, $O(b^m)$)
 - Inevitable for uninformed search methods…
Combining good properties of BFS and DFS

- **Limited depth DFS**: just like DFS, except never go deeper than some depth \(d\)

- **Iterative deepening DFS**:
 - Call limited depth DFS with depth 0;
 - If unsuccessful, call with depth 1;
 - If unsuccessful, call with depth 2;
 - Etc.

- Complete, finds shallowest solution

- **Space requirements of DFS**

- May seem wasteful timewise because replicating effort
 - Really not that wasteful because *almost all effort at deepest level*
 - \(db + (d-1)b^2 + (d-2)b^3 + \ldots + 1b^d\) is \(O(b^d)\) for \(b > 1\)
Let’s start thinking about cost

- BFS finds shallowest solution because always works on shallowest nodes first
- Similar idea: always work on the lowest-cost node first (uniform-cost search)
- If it finds a solution, it will be an optimal one
- Will often pursue lots of short steps first
- If optimal cost is C, and cost increases by at least L each step, we can go to depth C/L
- Similar memory problems as BFS
 - Iterative lengthening DFS does DFS up to increasing costs
Uniform cost search

state = A, cost = 0

state = B, cost = 3

state = C, cost = 5

state = F, cost = 12

state = A, cost = 7

state = E, cost = 7

state = F, cost = 11

goal state!
Searching backwards from the goal

- Sometimes can search backwards from the goal
 - Maze puzzles
 - Eights puzzle
 - Reaching location F
 - What about the goal of “having visited all locations”?

- Need to be able to compute predecessors instead of successors

- What’s the point?
Predecessor branching factor can be smaller than successor branching factor

- Stacking blocks:
 - only action is to add something to the stack

Start state: In hand: A, B, C
Goal state: In hand: nothing

We’ll see more of this...
Bidirectional search

- Even better: search from both the start and the goal, in parallel!

- If the shallowest solution has depth d and branching factor is b on both sides, requires only $O(b^{d/2})$ nodes to be explored!
Making bidirectional search work

• Need to be able to figure out whether the fringes intersect
 – Need to keep at least one fringe in memory…

• Other than that, can do various kinds of search on either tree, and get the corresponding optimality etc. guarantees

• Not possible (feasible) if backwards search not possible (feasible)
 – Hard to compute predecessors
 – High predecessor branching factor
 – Too many goal states
Repeated states can cause incompleteness or enormous runtimes.

Can maintain a list of previously visited states to avoid this:
- If a new path to the same state has greater cost, don’t pursue it further.
- Leads to time/space tradeoff.

“Algorithms that forget their history are doomed to repeat it” [Russell and Norvig]
Informed search

• So far, have assumed that no nongoal state looks better than another

• Unrealistic
 – Even without knowing the road structure, some locations seem closer to the goal than others
 – Some states of the 8s puzzle seem closer to the goal than others

• Makes sense to expand closer-seeming nodes first
Heuristics

- Key notion: **heuristic function** $h(n)$ gives an estimate of the distance from n to the goal
 - $h(n)=0$ for goal nodes

- E.g. **straight-line distance** for traveling problem

Say: $h(A) = 9$, $h(B) = 8$, $h(C) = 9$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$
 - Typically assume that h is 0 at goal states

- We’re adding something new to the problem!
- Can use heuristic to decide which nodes to expand first
Greedy best-first search

- **Greedy best-first search**: expand nodes with lowest h values first
- Rapidly finds the optimal solution!
- Does it always?
A bad example for greedy

Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$

Problem: greedy evaluates the promise of a node only by how far is left to go, does not take cost incurred already into account
A*

- Let $g(n)$ be cost incurred already on path to node n.
- Expand nodes with lowest $g(n) + h(n)$ first.

Say: $h(A) = 9$, $h(B) = 5$, $h(D) = 6$, $h(E) = 3$, $h(F) = 0$.

Note: if $h=0$ everywhere, then just uniform cost search.
A* example

state = A, g = 0, h = 9

state = B, g = 3, h = 8

state = D, g = 3, h = 6

state = E, g = 7, h = 3

state = F, g = 11, h = 0 goal state!
Admissibility

- A heuristic is **admissible** if it never overestimates the distance to the goal
 - If n is the optimal solution from n', then $g(n) \geq g(n') + h(n')$
- Straight-line distance is admissible: can’t hope for anything better than a straight road to the goal
- Admissible heuristic means that A^* is always optimistic
Optimality of A*

- If the heuristic is admissible, A* is optimal (in the sense that it will never return a suboptimal solution)

- Proof:
 - Suppose a suboptimal solution node n with solution value $C > C^*$ is about to be expanded (where C^* is optimal)
 - Let n^* be an optimal solution node (perhaps not yet discovered)
 - There must be some node n' that is currently in the fringe and on the path to n^*
 - We have $g(n) = C > C^* = g(n^*) \geq g(n') + h(n')$
 - But then, n' should be expanded first (contradiction)
A* is not complete (in contrived examples)

- No optimal search algorithm can succeed on this example (have to keep looking down the path in hope of suddenly finding a solution)
- Also true for uniform cost search (special case of A*)
A* is optimally efficient

- A* is optimally efficient in the sense that any other optimal algorithm must expand at least the nodes A* expands.

Proof:
- Besides solution, A* expands exactly the nodes with $g(n) + h(n) < C^*$.
 - Assuming it does not expand non-solution nodes with $g(n) + h(n) = C^*$.
- Any other optimal algorithm must expand at least these nodes (since there may be a better solution there).

Note: This argument assumes that the other algorithm uses the same heuristic h.
A* and repeated states

• Suppose we try to avoid repeated states

• Ideally, the second (or third, …) time that we reach a state the cost is at least as high as the first time
 – Otherwise, have to update everything that came after

• This is guaranteed if the heuristic is consistent: if one step takes us from n to n’, then $h(n) \leq h(n’) + \text{cost of step from } n \text{ to } n’$
 – Similar to triangle inequality
Proof

• Suppose \(n \) and \(n' \) correspond to same state, \(n' \) is cheaper to reach, but \(n \) is expanded first

• \(n' \) cannot have been in the fringe when \(n \) was expanded because \(g(n') < g(n) \), so

 \(- g(n') + h(n') < g(n) + h(n)\)

• So \(n' \) is generated (eventually) from some other node \(n'' \) currently in the fringe, after \(n \) is expanded

 \(- g(n) + h(n) \leq g(n'') + h(n'')\)

• Combining these, we get

 \(- g(n') + h(n') < g(n'') + h(n''), \text{ or equivalently} \)

 \(- h(n'') > h(n') + \text{cost of steps from } n'' \text{ to } n'\)

• Violates consistency
Iterative Deepening A*

- One big drawback of A* is the space requirement: similar problems as uniform cost search, BFS
- **Limited-cost depth-first A***: some cost cutoff c, any node with $g(n) + h(n) > c$ is not expanded, otherwise DFS
- **IDA*** gradually increases the cutoff of this
- Can require lots of iterations
 - Trading off space and time…
 - **RBFS** algorithm reduces wasted effort of IDA*, still linear space requirement
 - **SMA*** proceeds as A* until memory is full, then starts doing other things
More about heuristics

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

- One heuristic: number of misplaced tiles
- Another heuristic: sum of **Manhattan distances** of tiles to their goal location
 - Manhattan distance = number of moves required if no other tiles are in the way
- Admissible? Which is better?
- Admissible heuristic h_1 **dominates** admissible heuristic h_2 if $h_1(n) \geq h_2(n)$ for all n
 - Will result in fewer node expansions
- “Best” heuristic of all: solve the remainder of the problem optimally with search
 - Need to worry about computation time of heuristics…
Designing heuristics

- One strategy for designing heuristics: relax the problem (make it easier)
- "Number of misplaced tiles" heuristic corresponds to relaxed problem where tiles can jump to any location, even if something else is already there
- "Sum of Manhattan distances" corresponds to relaxed problem where multiple tiles can occupy the same spot
- Another relaxed problem: only move 1,2,3,4 into correct locations
- The ideal relaxed problem is
 - easy to solve,
 - not much cheaper to solve than original problem
- Some programs can successfully automatically create heuristics
Macro-operators

- Perhaps a more human way of thinking about search in the eights puzzle:

 \[
 \begin{array}{ccc}
 1 & 2 & 3 \\
 8 & 4 & 1 \\
 7 & 6 & 5 \\
 \end{array} \quad \rightarrow \quad \begin{array}{ccc}
 8 & 2 & 1 \\
 7 & 3 & 6 \\
 5 & 4 & 4 \\
 \end{array}
 \]

 sequence of operations = macro-operation

- We swapped two adjacent tiles, and rotated everything

- Can get all tiles in the right order this way
 - Order might still be rotated in one of eight different ways; could solve these separately

- Optimality?

- Can AI think about the problem this way? Should it?