§1 Recall that \(\text{NC}^k\) is the family of languages computed by Boolean circuits of fanin 2, polynomial size and depth \((\log(n))^k\). Also, \(\text{NC}^k\) is the family of languages computed by Boolean circuits of fanin 2, polynomial size and depth \((\log(n))^{O(1)}\). Recall that \(\text{NL} = \text{NSPACE}(\log(n))\) and \(L = \text{DSPACE}(\log(n))\).

(1.1) Describe an \(\text{NC}^c\) circuit for the problem of computing the product of two given \(n \times n\) matrices \(A, B\). (Should be easy; exploits parallelism)

(1.2) Describe an \(\text{NC}^c\) circuit for computing, given an \(n \times n\) matrix, the \(n^{th}\) powered matrix \(A^n\). (Use recursive powering and repeat 1.1)

(1.3) Use (a) and (b) to show that the \(\text{PATH}\) problem (given a digraph, with vertices \(s\) and \(t\), is there a directed path from \(s\) to \(t\)?) Explain why you can then conclude that every \(\text{NL}\) language is in \(\text{NC}\). (Hint: recall \(\text{PATH}\) is a log-space-complete problem for \(\text{NL}\))

*(1.4) Prove that \(\text{NC}^1 = L\). (Hint: Prove inclusion in each direction; think of the circuits of \(\text{NC}^1\) evaluated sidewise in \(L\), and think of \(L\) simulated by \(O(\log(n))\) depth circuits.) Explain why you can thus conclude that \(\text{PSPACE}\) is not equal to \(\text{NC}^1\).

§2 Recall that \(\text{PH}\) is the polynomial hierarchy: \(\text{PH}\) is the union of \(\Sigma_k^P\) for all \(k\).

*(2.1) Show for every \(k > 0\) that \(\text{PH}\) contains languages whose circuit size complexity is \(\Omega(n^k)\). (Hint: First show that such a language exists in \(\text{DSPAC}(2^{\text{poly}(n)})\).)

*(2.2) Show that \(\Sigma_2^P\) contains languages whose circuit size complexity is at least \(\Omega(n^k)\) for every \(k > 0\). (Hint: Keep in mind the lecture’s proof of the existence of functions of high circuit size complexity.)

*(2.3) Show for each \(k > 0\) there is a language in \(\text{PH}\) that is not decidable by circuits of size \((n^k)\). (Hint: Use diagonalization)
§3 Recall that \(P/poly \) is the family of languages of Boolean circuits of polynomial size. Also recall that \(\text{EXP} \) is the family of languages of deterministic TMs running in exponential time.

(3.1) Show that if \(\text{EXP} \subseteq P/poly \) then \(\text{EXP} = \Sigma_2^p \).
(Hint: Recall the lecture’s proof that if \(\text{NP} \subseteq P/poly \) then \(\text{PH} = \Sigma_2^p \).)

*(3.2) Show that if \(P = \text{NP} \) then there is a language in \(\text{EXP} \) that requires circuits of size at least \(2^n / n \). (Hint: Again, keep in mind the lecture’s proof of the existence of functions of high circuit size complexity.)

§4 A binary language \(L \subseteq \{0, 1\}^n \) is sparse if there is a polynomial \(p \) such that \(p(n) \) upper bounds the number of strings of \(L \) of length \(\leq n \) for every \(n \in \mathbb{N} \).

(4.1) Show that every sparse language is in \(P/poly \). (Should be easy; exploits fact that there is a separate circuit for each input length \(n \).)

**(4.2) Show that if a sparse language \(L \) is \(\text{NP} \)-complete then \(P = \text{NP} \).
(Hint: show a recursive exponential-time algorithm \(A \) such that on input of a \(n \)-variable Boolean formula \(F \) and a binary string \(x \) of length \(n \), outputs 1 iff \(F \) has a satisfying assignment \(y \) of its Boolean variables such that \(x < y \) where both \(x \) and \(y \) are interpreted as the binary representation of a number between 0 and \(2^n - 1 \). Use the polynomial time reduction from \(\text{SAT} \) to \(L \) to prune possibilities in the recursion tree of \(A \).)