1 Recall the definition of language classes ZPP, RP and its complement coRP given in the reading.
Show that $ZPP = RP \cap coRP$.

2. Language class BP·NP is defined: $BP\cdot NP = \{L : L \leq_P 3SAT\}$.

A nondeterministic circuit has two inputs x, y. We say that it accepts x iff there exists y such that $C(x, y) = 1$. The size of the circuit is measured as a function of $|x|$. Let $NP/poly$ be the languages that are decided by polynomial size nondeterministic circuits.
Show that $BP\cdot NP \subseteq NP/poly$.

3. Language class BPL is defined:
$L \in BPL$ if there is a $O(\log n)$-space PTM M such that for every $x \in \{0, 1\}^*$,
$Pr[M(x) = L(x)] \geq 2/3$.
Show that $BPL \subseteq P$
Hint: Use dynamic programming (involving matrix products) to determine the probability the probabilistic machine ends up in the accept configuration.