1 The Gram-Schmidt orthogonalization process

Provided with a set of linearly indepedent vectors v;, j = 0,2, - - -, in an inner product
space V' with the inner product

(u,v), wu,v eV,

the Gram-Schmidt process generates routinely a set of orthogonal vectors g, with
respect to the inner product (-, -), such that

Span{vl,---,vk} = Span{QIJ"'aqk}7 k= 1727"'
where ¢;; denotes the Diract delta function, and ¢; is the 2-norm of ¢; induced by the
inner product. The orthogonalization procedure is as simple as follows,
Qo(z) = wo(z),
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At step k + 1, the components of ¢; in vgy1, j < k, are eliminated by projections.
Note this yields a QR factorization.

2 GS orthogonalization of power functions

Consider the space of univariate polynomials on an interval. Let (-, -) be a well-defined
inner product,

) = [ pllatayula)ds )

One obtains a family of orthogonal polynomials by applying the GS procedure on the
power functions in increasing powers,
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For finite closed intervalus, one may consider the interval [—1, 1] only, by trans-
lation and scaling in the indepdent variable. The well known orthogonal polynimail
families include

e Legendre : w(z) =1
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e Chebyshev (II) : w(x) = V1 — 22
e Jacobi: w(x) = (1 +2)%(1 —2)°

e Chebyshev (I) : w(x) =

For semi-infinite intervals, we have the following examples on [0, c0).

e Laguerre : w(x) =e™*

e Generalized Laguerre : w(z) = z*e™

The weight function must decay and vanishsing as = goes to infinity (why?). On

(—00, 00), we have the Hermite polynomials with the weigh function w(z) = e *".
In each of these orthogonal polynimal families, there is a three-term recurrsion.

To make this easy to see, we may replace vy, 1 = zz* by zqy(z) at step k + 1 in (2),
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Notice that
(@, 7qk) = (xq5,qx) =0, (G +1) <k
We therefore have

1 = (r—ar) () = B gr1(z),

(qr, vqr) o (Tqr—1, qr)
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