Part I.
POLYNOMIALS
TRIGONOMETRIC POLYNOMIALS
PIECEWISE POLYNOMIALS

1. As discussed in the class, P_{m} and T_{n} are vector spaces, for $m, n \geq 0$.
(a) describe a relationship between P_{n} and P_{n+1},
(b) describe a relationship between T_{n} and T_{n+1},
(c) discuss the relationships between P_{m} and T_{n} for any pair of m and n.
2. Specify an orthogonal basis of T_{n} and the recursive relationship among the basis functions.
3. Verify that $\left\{1, x, \cdots, x^{n}\right\}$ form a basis for P_{n}. Describe an approach to getting an orthogonal basis from the natural one. Find a recursion among the orthogonal basis functions.
4. Describe the properties of the central B -spline functions $B_{k}, k \geq 0$, and the recursive evaluation of the functions.
5. Find the Fourier transform of the central B-spline functions and describe certain properties of the transformed functions.
6. Describe briefly the method via Taylor's expansion for approximating a smooth function with piecewise polynomials.

Part II.

1. Experiment with the provided matlab implementations of the Gaxpy operation; make observations and offer explanations of the observed phenomenons.
2. Provide a matlab function for the root extraction $z^{4}=4$ with Newton's iteration. Specify the initialization scheme and termination criteria.
3. Provide a matlab script that calls the root extraction function and visualizes the iteration behavior over the convex region $|x+y| \leq 2$.
4. Describe your observation based on the experimental results.

Optional Provide a comparison with some other method for the root extraction.

