## Part I. POLYNOMIALS TRIGONOMETRIC POLYNOMIALS PIECEWISE POLYNOMIALS

- 1. As discussed in the class,  $P_m$  and  $T_n$  are vector spaces, for  $m, n \ge 0$ .
  - (a) describe a relationship between  $P_n$  and  $P_{n+1}$ ,
  - (b) describe a relationship between  $T_n$  and  $T_{n+1}$ ,
  - (c) discuss the relationships between  $P_m$  and  $T_n$  for any pair of m and n.
- 2. Specify an orthogonal basis of  $T_n$  and the recursive relationship among the basis functions.
- 3. Verify that  $\{1, x, \dots, x^n\}$  form a basis for  $P_n$ . Describe an approach to getting an orthogonal basis from the natural one. Find a recursion among the orthogonal basis functions.
- 4. Describe the properties of the central B-spline functions  $B_k$ ,  $k \geq 0$ , and the recursive evaluation of the functions.
- 5. Find the Fourier transform of the central B-spline functions and describe certain properties of the transformed functions.
- 6. Describe briefly the method via Taylor's expansion for approximating a smooth function with piecewise polynomials.

## Part II.

- 1. Experiment with the provided MATLAB implementations of the GAXPY operation; make observations and offer explanations of the observed phenomenons.
- 2. Provide a MATLAB function for the root extraction  $z^4=4$  with Newton's iteration. Specify the initialization scheme and termination criteria.
- 3. Provide a MATLAB script that calls the root extraction function and visualizes the iteration behavior over the convex region  $|x+y| \leq 2$ .
- 4. Describe your observation based on the experimental results.

**Optional** Provide a comparison with some other method for the root extraction.