Interpolation and Regression Methods

Jan. 28 - Feb. 10

Part I

1. Extend the Newton's interpolation approach to the following interpolation problem,

$$
\left(x_{i}, y_{i}, y_{i}^{\prime} b_{i}\right), \quad i=0: n ;
$$

where y_{i}^{\prime} denotes the derivative value at x_{i} and b_{i} is a binary flag indicating whether or not the derivative interpolation condition is to be met.
2. Extend the LS linear regression approach to the following data fitting problem with data $\left(x_{i}, y_{i}\right), i=0: n$, subject to the equality constraints,

$$
p\left(x_{j}\right)=y_{j}, \quad j \in S_{n}
$$

where S_{n} is a small subset of $\{0,1, \cdots, n\}$ and p is a polynomial interpolant.
3. Describe the difference in the update computation at each elimination step between the LU factorization with pivoting and the QR factorization of a matrix.
4. Find some common features and differences between the following two matrix operators

$$
H_{1}=I-u u^{\mathrm{T}}, \quad H_{2}=I-2 u u^{\mathrm{T}}
$$

where I is the identity matrix, u is a real vector with unit Euclidean length $u^{\mathrm{T}} u=1$.
5. Describe the structures of the Laplacian matrices on a finite d dimensional grid, $d=1,2,3$.

Part II

1. The Runge function is defined as follows.

$$
\operatorname{runge}(x)=\frac{1}{1+x^{2}}, \quad x \in(-\infty, \infty)
$$

Compare the following interpolation methods on the interval $[-5,5]$, as the number of interpolation nodes increases.
(a) the Vandermonde approach
(b) the Cubic spline approach
(c) (optional) the B-spline approach

Built-in or provided MATLAB functions or scripts :
pval, ppval, runge, rungeView, pPolyEval
2. Provide review comments on Problem 4 of Exercise Set 3.5. in the textbook (parametric curves).

