Google News Personalization

Most of the slides are due to Mayur Datar, thanks also to Slides by J. Eisner

Comments from the Class:
Main characteristics

- Modify established machine learning algorithms for online setting.
- Importance of Scalability and fast response
- Solution: Separation of user data and story data
 - Offline processing of user similarities
 - Online processing of stories
- Domain independent system: not content based
- Empirically shown to be better than just recommending popular articles

Challenges

- Scale
 - Number of unique visitors in last 2 months: several millions
 - Number of stories within last 2 months: several millions
- Item Churn
 - News stories change every 10-15 mins
 - Recency of stories is important
 - Cannot build models ever so often
- Noisy ratings
 - Clicks treated as noisy positive vote
Approach
- Content-based vs. Collaborative filtering
- Collaborative filtering
 - Content agnostic: Can be applied to other application domains, languages, countries
 - Google’s key strength: Huge user base and their data.
 - Could have used content based filtering
 - Focus on algorithms that are scalable

Algorithm Overview
- Obtain a list of candidate stories
- For each story:
 - Obtain 3 scores (y_1, y_2, y_3)
 - Final score = $\sum w_i * y_i$
- User clustering algorithms (Minhash (y_1), PLSI (y_2))
 - Score ~ number of times this story was clicked by other users in your cluster
- Story-story co-visititation (y_3)
 - Score ~ number of times this story was co-clicked with other stories in your recent click history

Old memory-based approach

\[r_{u_i,s_k} = \sum_{i \neq a} I \left(u_i, s_k \right) w_{u_i,u_a} \]

- Recommendation score based on other users click history and similarity measure to other users
- Hence collaborative filtering
- However, this similarity matrix with size square of the number of the users is too large!

Their approach

\[r_{u_i,s_k} = \sum_{c_i} \sum_{u_j} \sum_{c_i} I \left(u_j, s_k \right) w_{u_a,c_i} \]

- Instead of n by n similarity matrix, compute only n by k similarity matrix, where k is the number of clusters.
- Also compute which clusters does each story belong in.

Algorithm Overview ...
- User clustering done offline as batch process
 - Can be run every day or 2-3 times a week
- Cluster-story counts maintained in real time
- New users
 - May not be clustered
 - Rely on co-visititation to generate recommendations

Rest of the Talk
- System architecture
- Brief description of Minhash and PLSI
 - Mapreduce: making Minhash and PLSI scalable
- Experimental Results
 - Comparison to other algorithms
 - Live traffic evaluation
User clustering - Minhash
- Input: User and his clicked stories
 \[S = \{s_1, s_2, \ldots, s_n\} \]
- User similarity
 \[S_u \cap S_u' \neq S_u \]
- Output: User clusters.
 - Similar users belong to same cluster

Minhash...
- Implementation: Pseudo-random permutation
 - Compute hash for each story and treat hash-value as permutation index (instead of actually computing random permutations)
 - Use map-reduce for calculation

Minhash ...
- Randomly permute the universe of clicked stories
 \[\{s_1, s_2, \ldots, s_n\} \]
- Min defined by permutation
 \[MH_u = \min_{j} s_j \]
 \[P\{MH_{u_1} = MH_{u_2}\} = \frac{S_{u_1} \cap S_{u_2}}{S_{u_1} \cdot S_{u_2}} \]
- Treat MinHash value as ClusterId
- Use p different Minhashes, and put story \(s_k \) in cluster defined by \((MH_{1}(s_k), MH_{2}(s_k), \ldots, MH_{p}(s_k)) \)
- Probabilistic clustering

Mapreduce
- Programmer specifies two primary methods:
 - `map(k, v) -> (k', v')`
 - `reduce(k', <v'>) -> <k', v'>`
- All \(v' \) with same \(k' \) are reduced together, in order.
- Usually also specify:
 - `partition(k, total partitions) -> partition for k`
 - Often a simple hash of the key
 - Allows reduce operations for different \(k' \) to be parallelized

Rest of the Talk
- Exemplary system architecture
- Brief description of Minhash and PLSI
 - Mapreduce: making Minhash and PLSI scalable
- Experimental Results
 - Comparison to other algorithms
 - Live traffic evaluation
Example: Word Frequencies in Web Pages

- Input is files with one document per record
- Specify a map function that takes a key/value pair
 - key = document URL
 - value = document contents
- Output of map function is (potentially many) key/value pairs.
 - In our case, output (word, "1") once per word in the document

```
"document1", "to be or not to be"
```

```
"to", "1"
"be", "1"
"or", "1"
```

Example continued: word frequencies in web pages

- MapReduce library gathers together all pairs with the same key (shuffle/sort)
- The reduce function combines the values for a key
 - In our case, compute the sum

```
key = "be"  
values = "1", "1"  
  \[ \text{key = "be", values = "1", "1"} \]
```

```
key = "or"  
values = "1", "1"  
  \[ \text{key = "or", values = "1", "1"} \]
```

```
key = "to"  
values = "1", "1"  
  \[ \text{key = "to", values = "1", "1"} \]
```

- Output of reduce paired with key and saved

MinHash as Mapreduce

- Map phase:
 - Input: key = user, value = story
 - Compute hash for each story (parallelizable across all data)
 - Output: key = cluster value = user
- Reduce phase:
 - Input: key = clusterid value = <list of users>

PLSI Framework

```
P(s(u)) = \sum_z P(s|z)P(z|u)
```

Background: LSI

- Given a co-occurrence matrix between sets A and B, Latent Semantic Indexing produces a smaller set Z and relations between A-Z and Z-B.
 - i.e. Z is the latent class of "types", A is set of users, B is set of stories
 - example: {(car), (truck), (flower)} --> {(1.3452 * car + 0.2828 * truck), (flower)}
- Original LSI is based on SVD on the co-occurrence matrix
 - essentially dimension reduction

Background: LSI

- However, LSI may produce latent types that are hard to interpret:
 - {(car), (bottle), (flower)} --> {(1.3452 * car + 0.2828 * bottle), (flower)}
- Moreover, the probabilistic model of LSI does not match observed data
 - Assumes that A and B form a joint Gaussian, while a Poisson distribution is more reasonable
Background: PLSI

- **New Alternative**: PLSI
 - Assumes some prior distributions for relationships between A-Z and B-Z, uses Expectation Maximization to estimate the model
 - Reported to give better results

- PLSI for collaborative filtering [Hofmann '04]

Background: Expectation Maximization

- Well-known algorithm in statistics for finding maximum likelihood estimates of parameters in a probabilistic model, where the model depends on unobserved latent variables.

 - **Expectation step**: Use current parameters (and observations) to reconstruct hidden structure
 - **Maximization step**: Use that hidden structure (and observations) to reestimate parameters

 Repeat until convergence!

EM: General Idea

- **Initial guess**:
 - Guess of unknown parameters (probabilities)
 - Observed structure (words, ice cream)

- **E step**:
 - Guess of unknown hidden structure (tags, parses, weather)

- **M step**:
 - Guess of unknown hidden structure (tags, parses, weather)

Clustering - PLSI Algorithm

- Learning (done offline)
 - ML estimation
 - Learn model parameters that maximize the likelihood of the sample data
 - Output: \(P[z|u] \)'s \(P[z|u] \)'s lead to a soft clustering of users
 - Runtime: we only use \(P[z|u] \)'s and ignore \(P[z|u] \)'s

PLSI (EM estimation) as Mapreduce

- **E step** (Map phase):
 - \(q^*(z; u, s, \emptyset) = \frac{p(s|z)p(z|u)}{\sum_z p(s|z)p(z|u)} \)

- **M step** (Reduce phase):
 - \(p(s|z) = \frac{\sum_u q^*(z; u, s, \emptyset)}{\sum_u \sum_s q^*(z; u, s, \emptyset)} \)
 - \(p(z|u) = \frac{\sum_s q^*(z; u, s, \emptyset)}{\sum_z \sum_s q^*(z; u, s, \emptyset)} \)

- Cannot load the entire model from prev iteration in a single machine during map phase
- Trick: Partition users and stories. Each partition loads the stats pertinent to it

PLSI as Mapreduce

- **U**, **P[u]**, **Z**, **P[z]**, **S**, **P[s]**
- **Learning (ML)**:
 - Learn model parameters that maximize the likelihood of the sample data
 - Output: \(P[z|u] \)'s \(P[z|u] \)'s lead to a soft clustering of users
- **Runtime**: we only use \(P[z|u] \)'s and ignore \(P[z|u] \)'s

Covisitation

- For each story s_i, store the covisitation counts with other stories $c(s_i, s_j)$
- Candidate story: s_k
- User history: s_1, \ldots, s_n
- score $(s_i, s_j) = c(s_i, s_j)/\sum_m c(s_i, s_m)$
- total_score(s_k) = \sum_n score(s_n, s_k)
- Question from class: is this biased toward most popular news?

Rest of the Talk

- Exemplary system architecture
- Brief description of Minhash and PLSI
 - Mapreduce: making Minhash and PLSI scalable
- Experimental Results
 - Comparison to other algorithms
 - Live traffic evaluation

Experimental results

Live traffic clickthrough evaluation

Open Questions

- How to combine scores from different algorithms?
 - Linear combination seems to do worth than individual algorithms
 - Intuition: each algorithm is better in some cases and worse in others; So we should weight the algorithms depending on the case
 - Question from class: why not use individual algorithms if they do better?
 - Directional co-visitation?

Other Comments from the Class

- PLSI's inability to handle dynamic data maybe solved using an approach similar to mini-batch?
- Challenge the assumption that users click what they care about:
 - Some people only look things up on Google news for which they have little knowledge
 - Connects with the paper’s content that they worry about people not clicking news in subjects they know much about.
Thank You!