CPS 173

Kidney exchanges
(largely follows Abraham, Blum, Sandholm 2007 paper)

Vincent Conitzer
conitzer@cs.duke.edu
Kidney transplants

- **Kidneys** filter waste from blood
- Kidney failure results in death in months
- **Dialysis**: regularly get blood filtered in hospital using external machine
 - Low quality of life
- Preferred option: kidney transplant
 - Cadaver kidneys
 - Donation from live patient (better)
- Must be compatible
- Shortage of kidneys…
An imaginary kidney exchange with money

- **Patient 1** bids $7000
- **Patient 2** bids $8000
- **Patient 3** bids $9000
- **Patient 4** bids $6000

- **Donor 1** asks $6000
- **Donor 2** asks $4000
- **Donor 3** asks $7000
- **Donor 4** asks $5000

compatibilities
Selling kidneys is illegal!

• Large international black market
 – Desperate people on both ends…

• What can we do legally?
Kidney exchange

patient 1

patient 2

donor 1 (patient 1’s friend)

donor 2 (patient 2’s friend)
Kidney exchange (3-cycle)

- Patient 1
 - Donor 1 (patient 1’s friend)

- Patient 2
 - Donor 2 (patient 2’s friend)

- Patient 3
 - Donor 3 (patient 3’s friend)
Another example

- patient 1
 - patient 1’s friend
- donor 1
- patient 2
 - patient 2’s friend
- donor 2
- patient 3
 - patient 3’s friend
- donor 3
- patient 4
 - patient 4’s friend
- donor 4
More complex example

- Patient 1
 - Donor 1 (patient 1’s friend)

- Patient 2
 - Donor 2 (patient 2’s friend)

- Patient 3
 - Donor 3 (patient 3’s friend)

- Patient 4
 - Donor 4 (patient 4’s friend)
Solving kidney exchange as maximum weighted bipartite matching
Which solution is better?
Long cycles are impractical

- All patients in a cycle must be operated on simultaneously
 - Otherwise donor can wait for friend to receive kidney, then back out
 - Contracts to donate an organ not binding
- If last-minute test reveals incompatibility, whole thing falls apart

- Require each cycle has length at most k
Different representation

patient 1

patient 2

donor 1
(patient 1’s friend)

donor 2
(patient 2’s friend)

patient 3

donor 3
(patient 3’s friend)

donor 4
(patient 4’s friend)

patient 4

edge from i to j = patient i wants donor j’s kidney

1

2

3

4
Different representation

- Patient 1
- Patient 2
- Patient 3
- Patient 4

Donor 1 (Patient 1’s friend)
Donor 2 (Patient 2’s friend)
Donor 3 (Patient 3’s friend)
Donor 4 (Patient 4’s friend)

Edge from i to j = patient i wants donor j’s kidney
Market clearing problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k
Market clearing problem

• Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k
Special case: \(k=2 \)

- If edges go in both directions, replace by undirected edge
- Remove other edges

> Maximum matching problem!
Complexity

• $k = 2$: in P by maximum matching
• $k =$ number of vertices (no constraint): in P by maximum weighted bipartite matching
• $k = 3, 4, 5, \ldots$: NP-hard!
An integer programming formulation

- For each edge from i to j, make a binary variable x_{ij}
 - 1 if i gets j’s kidney, 0 otherwise
- maximize $\sum_{ij} x_{ij}$
- subject to:
 - for every i: $\sum_j x_{ij} = \sum_j x_{ji}$
 - (number of kidneys received by i = number of kidneys given by i)
 - for every j: $\sum_i x_{ij} \leq 1$
 - (j gives at most 1 kidney)
 - for every path $i_1 i_2 \ldots i_k i_{k+1}$ with $i_1 \neq i_{k+1}$: $\sum_{1 \leq j \leq k} x_{ij_{j+1}} \leq k-1$
 - (no path of length k that doesn’t end up where it started, hence no cycles greater than k)
Another integer programming formulation
(turns out better)

• For each cycle c of length at most k, make a binary variable x_c
 – 1 if all edges on this cycle are used, 0 otherwise
• maximize $\sum |c|x_c$
• subject to:
• for every vertex i: $\sum_{c: i \text{ in } c} x_c \leq 1$
 – (every vertex in at most one used cycle)
Program size

• Even for small k, number of paths/cycles is too large in reasonably large exchanges
• Solution: generate constraints/variables on the fly during solving
 – Constraint/column generation
Another integer program (not in paper)

• Say an “event” is a set of simultaneous operations
• Denote events by \(t = 1, \ldots, T \) (how big should \(T \) be?)
• For each edge from \(i \) to \(j \), for each \(t \), make a binary variable \(x_{ijt} \)
 – 1 if \(i \) gets \(j \)’s kidney in event \(t \), 0 otherwise
• maximize \(\sum_{i,j,t} x_{ijt} \)
• subject to:
 • for every \(i, t \): \(\sum_j x_{ijt} = \sum_j x_{jit} \)
 – (number of kidneys received by \(i \) in event \(t \) = number of kidneys given by \(i \) in event \(t \))
 • for every \(j \): \(\sum_i x_{ijt} \leq 1 \)
 – (\(j \) gives at most 1 kidney overall)
 • for every \(t \): \(\sum_{i,j} x_{ijt} \leq k \)
 – (at most \(k \) operations per event)
Other applications

• Barter exchanges: agents want to swap items without paying money
• Peerflix (DVDs)
• Read It Swap It (books)
• Intervac (holiday houses)
• National odd shoe exchange
 – People with different foot sizes
 – Amputees