CPS 173
Mechanism design

Vincent Conitzer
conitzer@cs.duke.edu
Mechanism design: setting

- The **center** has a set of outcomes O that she can choose from
 - Allocations of tasks/resources, joint plans, …
- Each agent i draws a **type** θ_i from Θ_i
 - usually, but not necessarily, according to some probability distribution
- Each agent has a (commonly known) **valuation function** $v_i: \Theta_i \times O \rightarrow \mathbb{R}$
 - Note: depends on θ_i, which is **not** commonly known
- The center has some **objective function** $g: \Theta \times O \rightarrow \mathbb{R}$
 - $\Theta = \Theta_1 \times \ldots \times \Theta_n$
 - E.g., efficiency $(\sum_i v_i(\theta_i, o))$
 - May also depend on payments (more on those later)
 - The center does **not** know the types
What should the center do?

• She would like to know the agents’ types to make the best decision

• Why not just ask them for their types?

• Problem: agents might lie

• E.g., an agent that slightly prefers outcome 1 may say that outcome 1 will give him a value of 1,000,000 and everything else will give him a value of 0, to force the decision in his favor

• But maybe, if the center is clever about choosing outcomes and/or requires the agents to make some payments depending on the types they report, the incentive to lie disappears…
Quasilinear utility functions

• For the purposes of mechanism design, we will assume that an agent’s utility for
 – his type being θ_i,
 – outcome o being chosen,
 – and having to pay π_i,
 can be written as $v_i(\theta_i, o) - \pi_i$

• Such utility functions are called **quasilinear**

• Some of the results that we will see can be generalized beyond such utility functions, but we will not do so
Definition of a (direct-revelation) mechanism

- A **deterministic mechanism without payments** is a mapping \(o: \Theta \rightarrow O \).
- A **randomized mechanism without payments** is a mapping \(o: \Theta \rightarrow \Delta(O) \)
 - \(\Delta(O) \) is the set of all probability distributions over \(O \).
- Mechanisms **with payments** additionally specify, for each agent \(i \), a payment function \(\pi_i: \Theta \rightarrow \mathbb{R} \)
 (specifying the payment that that agent must make).
- Each mechanism specifies a **Bayesian game** for the agents, where \(i \)'s set of actions \(A_i = \Theta_i \)
 - We would like agents to use the truth-telling strategy defined by \(s(\theta_i) = \theta_i \).
The Clarke (aka. VCG) mechanism [Clarke 71]

- The Clarke mechanism chooses some outcome o that maximizes \(\Sigma_i v_i(\theta_i', o) \)
 - \(\theta_i' = \) the type that i reports
- To determine the payment that agent j must make:
 - Pretend j does not exist, and choose \(o_{-j} \) that maximizes \(\Sigma_{i \neq j} v_i(\theta_i', o_{-j}) \)
 - j pays \(\Sigma_{i \neq j} v_i(\theta_i', o_{-j}) - \Sigma_{i \neq j} v_i(\theta_i', o) = \Sigma_{i \neq j} (v_i(\theta_i', o_{-j}) - v_i(\theta_i', o)) \)
- We say that each agent pays the externality that she imposes on the other agents

- (VCG = Vickrey, Clarke, Groves)
Incentive compatibility

• Incentive compatibility (aka. truthfulness) = there is never an incentive to lie about one’s type

• A mechanism is dominant-strategies incentive compatible (aka. strategy-proof) if for any i, for any type vector $\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n$, and for any alternative type θ_i', we have

$$v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n) \geq v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i', \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i', \ldots, \theta_n)$$

• A mechanism is Bayes-Nash equilibrium (BNE) incentive compatible if telling the truth is a BNE, that is, for any i, for any types θ_i, θ_i',

$$\sum_{\theta_{-i}} P(\theta_{-i}) \left[v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)\right] \geq$$

$$\sum_{\theta'_{-i}} P(\theta'_{-i}) \left[v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i', \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)\right]$$
The Clarke mechanism is strategy-proof

- Total utility for agent j is
 \[v_j(\theta_j, o) - \sum_{i\neq j} (v_i(\theta'_i, o) - v_i(\theta'_i, o)) = \]
 \[v_j(\theta_j, o) + \sum_{i\neq j} v_i(\theta'_i, o) - \sum_{i\neq j} v_i(\theta'_i, o) \]
- But agent j cannot affect the choice of o_j
- Hence, j can focus on maximizing $v_j(\theta_j, o) + \sum_{i\neq j} v_i(\theta'_i, o)$
- But mechanism chooses o to maximize $\sum_i v_i(\theta'_i, o)$
- Hence, if $\theta'_j = \theta_j$, j’s utility will be maximized!

- Extension of idea: add any term to agent j’s payment that does not depend on j’s reported type
- This is the family of Groves mechanisms [Groves 73]
Individual rationality

• A selfish center: “All agents must give me all their money.” – but the agents would simply not participate
 – If an agent would not participate, we say that the mechanism is not individually rational
• A mechanism is ex-post individually rational if for any i, for any type vector \(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n \), we have
 \[
 v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n) \geq 0
 \]
• A mechanism is ex-interim individually rational if for any i, for any type \(\theta_i \),
 \[
 \Sigma_{\theta_i} P(\theta_i) [v_i(\theta_i, o(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)) - \pi_i(\theta_1, \theta_2, \ldots, \theta_i, \ldots, \theta_n)] \geq 0
 \]
 – i.e., an agent will want to participate given that he is uncertain about others’ types (not used as often)
Additional nice properties of the Clarke mechanism

• Ex-post individually rational, assuming:
 – An agent’s presence never makes it impossible to choose an outcome that could have been chosen if the agent had not been present, and
 – No agent ever has a negative value for an outcome that would be selected if that agent were not present

• Weakly budget balanced - that is, the sum of the payments is always nonnegative - assuming:
 – If an agent leaves, this never makes the combined welfare of the other agents (not considering payments) smaller
Generalized Vickrey Auction (GVA)
(= VCG applied to combinatorial auctions)

• Example:
 – Bidder 1 bids \(\{A, B\}, 5\)
 – Bidder 2 bids \(\{B, C\}, 7\)
 – Bidder 3 bids \(\{C\}, 3\)

• Bidders 1 and 3 win, total value is 8

• Without bidder 1, bidder 2 would have won
 – Bidder 1 pays 7 - 3 = 4

• Without bidder 3, bidder 2 would have won
 – Bidder 3 pays 7 - 5 = 2

• Strategy-proof, ex-post IR, weakly budget balanced

• Vulnerable to collusion (more so than 1-item Vickrey auction)
 – E.g., add two bidders \(\{B\}, 100\), \(\{A, C\}, 100\)
 – What happens?

 – More on collusion in GVA in [Ausubel & Milgrom 06, Conitzer & Sandholm 06]
Clarke mechanism is not perfect

- Requires payments + quasilinear utility functions
- In general money needs to flow away from the system
 - Strong budget balance = payments sum to 0
 - In general, this is impossible to obtain in addition to the other nice properties [Green & Laffont 77]
- Vulnerable to collusion
 - E.g., suppose two agents both declare a ridiculously large value (say, $1,000,000) for some outcome, and 0 for everything else. What will happen?
- Maximizes sum of agents’ utilities (if we do not count payments), but sometimes the center is not interested in this
 - E.g., sometimes the center wants to maximize revenue
Why restrict attention to truthful direct-revelation mechanisms?

- Bob has an incredibly complicated mechanism in which agents do not report types, but do all sorts of other strange things.
- E.g.: Bob: “In my mechanism, first agents 1 and 2 play a round of rock-paper-scissors. If agent 1 wins, she gets to choose the outcome. Otherwise, agents 2, 3 and 4 vote over the other outcomes using the Borda rule. If there is a tie, everyone pays $100, and…”
- Bob: “The equilibria of my mechanism produce better results than any truthful direct revelation mechanism.”
- Could Bob be right?
The revelation principle

- For any (complex, strange) mechanism that produces certain outcomes under strategic behavior (dominant strategies, BNE)...
- ... there exists a (dominant-strategies, BNE) incentive compatible direct revelation mechanism that produces the same outcomes!
Myerson-Satterthwaite impossibility [1983]

• Simple setting:

\[v(\, v \,) = x \quad v(\, v \,) = y \]

• We would like a mechanism that:
 – is efficient (trade if and only if \(y > x \)),
 – is budget-balanced (seller receives what buyer pays),
 – is BNE incentive compatible, and
 – is ex-interim individually rational

• This is impossible!
A few computational issues in mechanism design

- **Algorithmic** mechanism design
 - Sometimes standard mechanisms are too hard to execute computationally (e.g., Clarke requires computing optimal outcome)
 - Try to find mechanisms that are easy to execute computationally (and nice in other ways), together with algorithms for executing them

- **Automated** mechanism design
 - Given the specific setting (agents, outcomes, types, priors over types, …) and the objective, have a computer solve for the best mechanism for this particular setting

- When agents have **computational limitations**, they will not necessarily play in a game-theoretically optimal way
 - Revelation principle can collapse; need to look at nontruthful mechanisms

- Many other things (computing the outcomes in a **distributed** manner; what if the agents come in over time (**online** setting); …)