296.3: Algorithms in the Real World

Suffix Trees

Exact String Matching

- Given a text S of length m and pattern P of length n
- “Quickly” find an occurrence (or all occurrences) of P in S

- A Naïve solution:
 Compare P with $S[i...i+n-1]$ for all i --- $O(nm)$ time

- How about $O(n+m)$ time? (Knuth Morris Pratt)
- How about $O(m)$ preprocessing time and $O(n)$ search time?

Suffix Trees

- Preprocess the text in $O(m)$ time and search in $O(n)$ time

- Idea:
 - Construct a tree containing all suffixes of text along the paths from the root to the leaves
 - For search, just follow the appropriate path

A suffix tree for the string x a b x a

Notice no leaves for suffixes xa or a
Suffix Trees

A suffix tree for the string $x a b x a c$

Search for the string $a b x$

Constructing Suffix trees

- Naive $O(m^2)$ algorithm
- For every i, add the suffix $S[i..m]$ to the current tree

Constructing Suffix trees

- Naive $O(m^2)$ algorithm
- For every i, add the suffix $S[i..m]$ to the current tree
Ukkonen’s linear-time algorithm

- We will start with an $O(m^3)$ algorithm and then give a series of improvements.
- In stage i, we construct a suffix tree T_i for $S[1..i]$.
- As we will see, building T_{i+1} from T_i naively takes $O(i^2)$ time because we insert each of the $i+1$ suffixes $S[j..i+1]$.
- Thus a total of $O(m^3)$ time.

Going from T_i to T_{i+1}

- In the j^{th} substage of stage $i+1$, for $j = 1$ to $i+1$, we insert $S[j..i+1]$ into T_i. Let $S[j..i] = \beta$.
- Three cases:
 - Rule 1: The path β ends on a leaf \Rightarrow add $S[i+1]$ to the label of the last edge.
 - Rule 2: The path β continues with characters other than $S[i+1]$ \Rightarrow create a new leaf node and split the path labeled β.
 - Rule 3: A path labeled $\beta S[i+1]$ already exists \Rightarrow do nothing.

Idea #1: Suffix Links

- Note that in each substage, we first search for some string in the tree and then insert a new node/edge/label.
- Can we speed up looking for strings in the tree?
- Note that in any substage, we look for a suffix of the strings searched in previous substages.
- Idea: Put a pointer from an internal node labeled $x\alpha$ to the node labeled α.
- Such a link is called a “Suffix Link”.

Add the letter d.
Suffix Links – Bounding the time

- Steps in each substage
 - Go up 1 link to the nearest internal node
 - Follow a suffix link to the suffix node
 - Follow path link for the remaining string
- First and second steps happen once per substage.
- Suffix links ensure that in third step, each character in $S[1..i+1]$ is used at most once to traverse a downward tree edge to an internal node. Hence $O(m)$ time over stage.
- Thus the total time per stage is $O(m)$

Maintaining Suffix Links

- Whenever a node labeled $x\alpha$ is created, in the following substage a node labeled α is created. Why?
- When a new node is created, add a suffix link from it to the root, and if required, add a suffix link from its predecessor to it.

Going from $O(m^2)$ to $O(m)$

- Can we even hope to do better than $O(m^2)$?
- Size of the tree itself can be $O(m^2)$
- But notice that there are only $2m$ edges! - Why?
 (still $O(m)$ even if we double count edges for all suffixes that are prefixes of other suffixes)
- Idea: represent labels of edges as intervals
- Can easily modify the entire process to work on intervals

Idea #2: Getting rid of Rule 3

- Recall Rule 3: A path labeled $S[j..i+1]$ already exists, do nothing.
- If $S[j..i+1]$ already exists, then $S[j+1..i+1]$ already exists too and we will again apply Rule 3 in the next substage
- Whenever we encounter Rule 3, this stage is over - skip to the next stage.
Idea #3: Fast-forwarding Rules 1 & 2

• Rule 1 applies whenever a path ends in a leaf

• Note that a leaf node always stays a leaf node - the only change is to append the new character to its edge using Rule 1

• An application of Rule 2 in substage \(j \) creates a new leaf node
 This node is then accessed using Rule 1 in substage \(j \) in all the following stages

Idea #3: Fast-forwarding Rules 1 & 2

• Fast-forward Rule 1 and 2
 - Whenever Rule 2 creates a node, instead of labeling the last edge with only one character, implicitly label it with the entire remaining suffix

• Each leaf edge is labeled only once!

Loop Structure

- Rule 2 gets applied once per \(j \)
- Rule 3 gets applied once per \(i \)

Another Way to Think About It

Insert finger when \(S[j..i] \) not in tree (rule 2)

1) Insert \(S[j..n] \) into tree by branching at \(S[j..i-1] \)
2) Create suffix pointer to new node at \(S[j..i-1] \) if there is one
3) Use parent suffix pointer to move finger to \(j+1 \)

Invariants:
1. \(j \) is never after \(i \)
2. \(S[j..i-1] \) is always in the tree
An example

Leaf edge labels are updated by using a variable to denote the start of the interval

Complexity Analysis

- Rule 3 is used only once in every stage
- For every j, Rule 1 & 2 are applied only once in the jth substage of all the stages.
- Each application of a rule takes $O(1)$ steps
- Other overheads are $O(1)$ per stage
- Total time is $O(m)$

Extending to multiple texts

- Suppose we want to match a pattern with a dictionary of k texts
- Concatenate all the texts (separated by special characters) and construct a common suffix tree
- Time taken = $O(km)$
- Unnecessarily complicated tree: needs special characters

Multiple texts - Better algorithm

- First construct a suffix tree on the first text, then insert suffixes of the second text and so on
- Each leaf node should store values corresponding to each text
- $O(km)$ as before
Longest Common Substring

- Find the longest string that is a substring of both S_1 and S_2
- Construct a common suffix tree for both
- Any node that has leaf nodes labeled by S_1 and S_2 in the subtree it roots gives a common substring
- The "deepest" such node is the required substring
- Can be found in linear time by a tree traversal.

Common substrings of M strings

- Given M strings of total length n, find for every k, the length l_k of the longest string that is a substring of at least k of the strings
- Construct a common suffix tree
- For every internal node, find the number of distinctly labeled leaves in the subtree rooted at the node
- Report l_k by a single tree traversal
- $O(Mn)$ time - not linear!

Lempel-Ziv compression

- Recall that at each stage, we output a pair (p_i, l_i) where $S[p_i .. p_i+l_i] = S[i .. i+l_i]$
- Find all pairs (p_i, l_i) in linear time
- Construct a suffix tree for S
- Let the position of each internal node be the minimum of the positions of all leaves below it - this is the first place in S where the node's label occurs. Call this position c_v.
- For every i, search for the string $S[i .. m]$ stopping just before c_v,i. This gives us l_i and p_i.