Today’s topics

Game Theory
Normal-form games
Dominating strategies
Nash equilibria

Acknowledgements
Vincent Conitzer, Michael Kearns

Rock-paper-scissors

Column player aka. player 2
(simultaneously) chooses a column

Row player aka. player 1
chooses a row

A row or column is called an action or (pure) strategy

Row player’s utility is always listed first, column player’s second

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.

Matching pennies (~penalty kick)

Two players drive cars towards each other
• If one player goes straight, that player wins
• If both go straight, they both die

“Chicken”
RPS – Seinfeld variant

MICKEY: All right, rock beats paper! (Mickey smacks Kramer's hand for losing)
KRAMER: I thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?
MICKEY: (looks at hand) Nothing beats rock.

```
<table>
<thead>
<tr>
<th></th>
<th>0, 0</th>
<th>1, -1</th>
<th>1, -1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1, 1</td>
<td>0, 0</td>
<td>-1, 1</td>
<td></td>
</tr>
<tr>
<td>-1, 1</td>
<td>1, -1</td>
<td>0, 0</td>
<td></td>
</tr>
</tbody>
</table>
```

Dominance

- **Player i’s strategy s_i strictly dominates s_i’ if**
 - for any s_{-i} \(P_i(s_i, s_{-i}) > P_i(s_i', s_{-i}) \)
- **s_i weakly dominates s_i’ if**
 - for any s_{-i} \(P_i(s_i, s_{-i}) \geq P_i(s_i', s_{-i}); \) and
 - for some s_{-i} \(P_i(s_i, s_{-i}) > P_i(s_i', s_{-i}) \)

- \(-i = “the player(s) other than i”\)

Prisoner’s Dilemma

- Pair of criminals has been caught
- District attorney has evidence to convict them of a minor crime (4 years in jail); knows that they committed a major crime together (10 years in jail) but cannot prove it
- Offers them a deal:
 - If both confess to the major crime, they each get a 6 year reduction
 - If only one confesses, that one gets 9 year reduction

```
<table>
<thead>
<tr>
<th></th>
<th>-4, -4</th>
<th>0, -10</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10, 0</td>
<td>0, -10</td>
<td></td>
</tr>
<tr>
<td>don’t confess</td>
<td>don’t confess</td>
<td></td>
</tr>
</tbody>
</table>
```

“Should I buy an SUV?”

- **purchasing cost**
 - cost: 5
 - cost: 3
 - cost: 8
 - cost: 5
- **accident cost**
 - cost: 5
 - cost: 2
 - cost: 5
 - cost: 5

```
<table>
<thead>
<tr>
<th></th>
<th>-10, -10</th>
<th>-7, -11</th>
</tr>
</thead>
<tbody>
<tr>
<td>-11, -7</td>
<td>-8, -8</td>
<td></td>
</tr>
</tbody>
</table>
```
Mixed strategies

- **Mixed strategy** for player i = probability distribution over player i’s (pure) strategies
- E.g., 1/3, 1/3, 1/3
- Example of dominance by a mixed strategy:

```
1/2 3, 0 0, 0
1/2 0, 0 3, 0
```

Usage:
- σ_i denotes a mixed strategy,
- s_i denotes a pure strategy

Example:
- Mixed strategy for player i = probability distribution over player i’s (pure) strategies
- E.g., $1/3$, $1/3$, $1/3$

John Forbes Nash

- A mixed strategy for a player is a distribution on their available actions
 - e.g. 1/3 rock, 1/3 paper, 1/3 scissors
- Joint mixed strategy for N players:
 - a distribution for each player (possibly different)
 - assume everyone knows all the distributions
 - but the “coin flips” used to select from player i’s distribution known only to i
 - “private randomness”
 - so only player i knows their actual choice of action
 - can people randomize? (more later)
- Joint mixed strategy is an equilibrium if:
 - for every player i, their distribution is a best response to all the others
 - i.e. cannot get higher (average or expected) payoff by changing distribution
 - only consider unilateral deviations by each player!
 - Nash 1950: every game has a mixed strategy equilibrium!
 - no matter how many rows and columns there are
 - in fact, no matter how many players there are
- Thus known as a Nash equilibrium
- A major reason for Nash’s Nobel Prize in economics

Facts about Nash Equilibria

- While there is always at least one, there might be many
 - zero-sum games: all equilibria give the same payoffs to each player
 - non zero-sum: different equilibria may give different payoffs!
- Equilibrium is a static notion
 - does not suggest how players might learn to play equilibrium
 - does not suggest how we might choose among multiple equilibria
- Nash equilibrium is a strictly competitive notion
 - players cannot have “pre-play communication”
 - bargains, side payments, threats, collusions, etc. not allowed
- Computing Nash equilibria for large games is difficult

Nash equilibria of “chicken”...

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0, 0</td>
<td>-1, 1</td>
</tr>
<tr>
<td>S</td>
<td>1, -1</td>
<td>-5, -5</td>
</tr>
</tbody>
</table>

- Is there a Nash equilibrium that uses mixed strategies? Say, where player 1 uses a mixed strategy?
- Recall: if a mixed strategy is a best response, then all of the pure strategies that it randomizes over must also be best responses
- So we need to make player 1 indifferent between D and S
- Player 1’s utility for playing $D = -p_s$
- Player 1’s utility for playing $S = p_D - 5p_s = 1 - 6p_s$
- So we need $-p_s = 1 - 6p_s$, which means $p_s = 1/5$
- Then, player 2 needs to be indifferent as well
- Mixed-strategy Nash equilibrium: $((4/5 D, 1/5 S), (4/5 D, 1/5 S))$
 - People may die! Expected utility -1/5 for each player