Slides from Kevin Wayne on Union-Find and Percolation
Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.
dynamic connectivity
quick find
quick union
improvements
applications
Dynamic connectivity

Given a set of objects

- **Union**: connect two objects.
- **Connected**: is there a path connecting the two objects?

\[
\begin{align*}
\text{union}(3, 4) \\
\text{union}(8, 0) \\
\text{union}(2, 3) \\
\text{union}(5, 6) \\
\text{connected}(0, 2) & \quad \text{no} \\
\text{connected}(2, 4) & \quad \text{yes} \\
\text{union}(5, 1) \\
\text{union}(7, 3) \\
\text{union}(1, 6) \\
\text{union}(4, 8) \\
\text{connected}(0, 2) & \quad \text{yes} \\
\text{connected}(2, 4) & \quad \text{yes}
\end{align*}
\]
Q. Is there a path from p to q?

A. Yes.
Dynamic connectivity applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Variable names in Fortran.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Metallic sites in a composite system.

When programming, convenient to name sites 0 to N-1.

- Use integers as array index.
- Suppress details not relevant to union-find.

Can use symbol table to translate from site names to integers: stay tuned (Chapter 3)
We assume "is connected to" is an equivalence relation:
- Reflexive: p is connected to p.
- Symmetric: if p is connected to q, then q is connected to p.
- Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.
Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

\[
\text{union}(2, 5)
\]

\[
\begin{align*}
\{0\} & \quad \{1\} & \quad \{2\} & \quad \{3\} & \quad \{4\} & \quad \{5\} & \quad \{6\} & \quad \{7\} \\
0 & \quad 1 & \quad 2 & \quad 3 & \quad 4 & \quad 5 & \quad 6 & \quad 7
\end{align*}
\]

3 connected components

\[
\begin{align*}
\{0\} & \quad \{1 2 3 4 5 6 7\}
\end{align*}
\]

2 connected components
Goal. Design efficient data structure for union-find.
- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

Union-find data type (API)

```java
public class UF {
    UF(int N)
        initialize union-find data structure with $N$ objects (0 to N-1)
    void union(int p, int q)
        add connection between p and q
    boolean connected(int p, int q)
        are p and q in the same component?
    int find(int p)
        component identifier for p (0 to N-1)
    int count()
        number of components
}
```
Dynamic-connectivity client

• Read in number of objects N from standard input.
• Repeat:
 - read in pair of integers from standard input
 - write out pair if they are not already connected

```java
public static void main(String[] args)
{
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty())
    {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (uf.connected(p, q)) continue;
        uf.union(p, q);
        StdOut.println(p + " " + q);
    }
}
```

% more tiny.txt

10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7
dynamic connectivity
quick find
quick union
improvements
applications
Quick-find [eager approach]

Data structure.
- Integer array \(\text{id[]} \) of size \(N \).
- Interpretation: \(p \) and \(q \) in same component iff they have the same id.

\[
\begin{array}{cccccccccc}
 i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
 \text{id}[i] & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9 \\
\end{array}
\]

5 and 6 are connected
2, 3, 4, and 9 are connected
Quick-find [eager approach]

Data structure.
- Integer array $\text{id}[]$ of size N.
- Interpretation: p and q in same component iff they have the same id.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{id}[i]$</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Find. Check if p and q have the same id.

- $\text{id}[3] = 9$; $\text{id}[6] = 6$
- 3 and 6 in different components
- 5 and 6 are connected
- 2, 3, 4, and 9 are connected
Data structure.
• Integer array $id[]$ of size N.
• Interpretation: p and q in same component iff they have the same id.

Find. Check if p and q have the same id.

Union. To merge sets containing p and q, change all entries with $id[p]$ to $id[q]$.
Quick-find example

id[]

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

id[p] and id[q] differ, so union() changes entries equal to id[p] to id[q] (in red)

id[p] and id[q] match, so no change
public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}
Quick-find is too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>init</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
</tbody>
</table>

Quick-find defect.

- Union too expensive.
- Trees are flat, but too expensive to keep them flat.
- Ex. Takes N^2 array accesses to process sequence of N union commands on N objects.
Data structure.

- Integer array `id[]` of size `N`.
- Interpretation: `id[i]` is parent of `i`.
- Root of `i` is `id[id[id[...id[i]...]]]`.

```
i  0  1  2  3  4  5  6  7  8  9
id[i] 0  1  9  4  9  6  6  7  8  9
```

```
0 1 9 6 7 8 9 3 5 4 2
```

3's root is 9; 5's root is 6

keep going until it doesn't change
Data structure.
• Integer array id[] of size N.
• Interpretation: id[i] is parent of i.
• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>id[i]</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

3's root is 9; 5's root is 6
3 and 5 are in different components
Data structure.
• Integer array $id[]$ of size N.
• Interpretation: $id[i]$ is parent of i.
• Root of i is $id[id[id[...id[i]...]]]$.

Find. Check if p and q have the same root.

Union. To merge sets containing p and q, set the id of p's root to the id of q's root.
Quick-union example

```
ip  q
4  3
3  8
6  5
9  4
2  1
```

```
 id[]
0  1  2  3  4  5  6  7  8  9
0  1  2  3  4  5  6  7  8  9
0  1  2  3  6  7  8  9
0  1  2  3  6  7  8  9
0  1  2  3  5  6  7  8  9
0  1  2  3  5  6  7  8  9
0  1  2  3  5  6  7  8
0  1  2  3  5  6  7  8
0  1  2  3  5  6  7
0  1  2  3  5  6
0  1  2  3  5
```
Quick-union example

id[]
p q 0 1 2 3 4 5 6 7 8 9

8 9 0 1 1 0 8 3 5 5 7 8 8
5 0 0 1 1 0 8 3 5 5 7 8 8
 0 1 1 8 3 0 5 7 8 8
7 2 0 1 1 0 3 0 5 7 8 8
 0 1 1 0 3 0 5 1 8 8
6 1 0 1 1 0 3 0 5 1 8 8
 1 1 1 8 3 0 5 1 8 8
1 0 1 1 1 8 3 0 5 1 8 8
6 7 1 1 1 8 3 0 5 1 8 8
Quick-union: Java implementation

```java
public class QuickUnionUF {
    private int[] id;

    public QuickUnionUF(int N) {
        id = new int[N];
        for (int i = 0; i < N; i++) id[i] = i;
    }

    private int root(int i) {
        while (i != id[i]) i = id[i];
        return i;
    }

    public boolean connected(int p, int q) {
        return root(p) == root(q);
    }

    public void union(int p, int q) {
        int i = root(p), j = root(q);
        id[i] = j;
    }
}
```

- Set id of each object to itself (N array accesses)
- Chase parent pointers until reach root (depth of i array accesses)
- Check if p and q have same root (depth of p and q array accesses)
- Change root of p to point to root of q (depth of p and q array accesses)
Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

<table>
<thead>
<tr>
<th>algorithm</th>
<th>init</th>
<th>union</th>
<th>find</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>N</td>
<td>N</td>
<td>1</td>
</tr>
<tr>
<td>quick-union</td>
<td>N</td>
<td>N †</td>
<td>N</td>
</tr>
</tbody>
</table>

† includes cost of finding root

Quick-find defect.
- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.
- Trees can get tall.
- Find too expensive (could be N array accesses).
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
Improvement 1: weighting

Weighted quick-union.
- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking small tree below large one.
Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)
Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```java
return root(p) == root(q);```

Union. Modify quick-union to:
- Merge smaller tree into larger tree.
- Update the sz[] array.

```java
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) {
 id[i] = j;
 sz[j] += sz[i];
} else {
 id[j] = i;
 sz[i] += sz[j];
}```
Running time.
• Find: takes time proportional to depth of p and q.
• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

$N = 10$
$\text{depth}(x) = 3 \delta \lg N$
Running time.
• Find: takes time proportional to depth of p and q.
• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Pf. When does depth of x increase?
Increases by 1 when tree T_1 containing x is merged into another tree T_2.
• The size of the tree containing x at least doubles since $|T_2| \geq |T_1|$.
• Size of tree containing x can double at most $\lg N$ times. Why?
Running time.
- Find: takes time proportional to depth of \(p \) and \(q \).
- Union: takes constant time, given roots.

Proposition. Depth of any node \(x \) is at most \(\lg N \).

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.
Quick union with path compression. Just after computing the root of \(p \), set the id of each examined node to point to that root.

Improvement 2: path compression
Path compression: Java implementation

Standard implementation: add second loop to `find()` to set the `id[]` of each examined node to the root.

Simpler one-pass variant: halve the path length by making every other node in path point to its grandparent.

```java
public int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice, no reason not to! Keeps tree almost completely flat.
Weighted quick-union with path compression example

1 linked to 6 because of path compression

7 linked to 6 because of path compression
Proposition. Starting from an empty data structure, any sequence of \(M \) union–find operations on \(N \) objects makes at most proportional to \(N + M \lg^* N \) array accesses.

- Proof is very difficult.
- Can be improved to \(N + M \langle (M, N) \rangle \).
- But the algorithm is still simple!

Linear-time algorithm for \(M \) union-find ops on \(N \) objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.
Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

<table>
<thead>
<tr>
<th>algorithm</th>
<th>worst-case time</th>
</tr>
</thead>
<tbody>
<tr>
<td>quick-find</td>
<td>M N</td>
</tr>
<tr>
<td>quick-union</td>
<td>M N</td>
</tr>
<tr>
<td>weighted QU</td>
<td>N + M log N</td>
</tr>
<tr>
<td>QU + path compression</td>
<td>N + M log N</td>
</tr>
<tr>
<td>weighted QU + path compression</td>
<td>N + M lg* N</td>
</tr>
</tbody>
</table>

M union–find operations on a set of N objects

Ex. [10⁹ unions and finds with 10⁹ objects]
- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.
› dynamic connectivity
› quick find
› quick union
› improvements
› applications
A model for many physical systems:

• N-by-N grid of sites.
• Each site is open with probability p (or blocked with probability $1-p$).
• System percolates iff top and bottom are connected by open sites.

<table>
<thead>
<tr>
<th>model</th>
<th>system</th>
<th>vacant site</th>
<th>occupied site</th>
<th>percolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricity</td>
<td>material</td>
<td>conductor</td>
<td>insulated</td>
<td>conducts</td>
</tr>
<tr>
<td>fluid flow</td>
<td>material</td>
<td>empty</td>
<td>blocked</td>
<td>porous</td>
</tr>
<tr>
<td>social interaction</td>
<td>population</td>
<td>person</td>
<td>empty</td>
<td>communicates</td>
</tr>
</tbody>
</table>
Depends on site vacancy probability p.

- p low (0.4) does not percolate
- p medium (0.6) percolates?
- p high (0.8) percolates
When N is large, theory guarantees a sharp threshold p^*.

- $p > p^*$: almost certainly percolates.
- $p < p^*$: almost certainly does not percolate.

Q. What is the value of p^*?
Monte Carlo simulation

- Initialize N-by-N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^*.
Q. How to check whether an N-by-N system percolates?

Dynamic connectivity solution to estimate percolation threshold

$N = 5$
Q. How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.

![Diagram of an N-by-N system with open and blocked sites]
Q. How to check whether an N-by-N system percolates?

- Create an object for each site and name them 0 to $N^2 - 1$.
- Sites are in same set if connected by open sites.
Q. How to check whether an N-by-N system percolates?
• Create an object for each site and name them 0 to $N^2 - 1$.
• Sites are in same set if connected by open sites.
• Percolates iff any site on bottom row is connected to site on top row.

Dynamic connectivity solution to estimate percolation threshold

brute-force algorithm: N^2 calls to connected()
Clever trick. Introduce two virtual sites (and connections to top and bottom).
• Percolates iff virtual top site is connected to virtual bottom site.

Dynamic connectivity solution to estimate percolation threshold

\[N = 5 \]

open site

blocked site
Clever trick. Introduce two virtual sites (and connections to top and bottom).

- Percolates iff virtual top site is connected to virtual bottom site.
- Open site is full iff connected to virtual top site.

Diagram:

- **N = 5**
- **empty open site** (not connected to top)
- **full open site** (connected to top)
- **blocked site**
- **virtual top site**
- **virtual bottom site**
Q. How to model as dynamic connectivity problem when opening a new site?
Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect new site to all of its adjacent open sites.

\(N = 5 \)

up to 4 calls to union()
Steps to developing a usable algorithm.
• Model the problem.
• Find an algorithm to solve it.
• Fast enough? Fits in memory?
• If not, figure out why.
• Find a way to address the problem.
• Iterate until satisfied.

The scientific method.

Mathematical analysis.