
CompSci 100e
Program Design and Analysis II

March 29, 2011

Prof. Rodger

CompSci 100e, Spring2011 1

Presenter
Presentation Notes
Don’t print 14 in handout

Announcements

• One APT next week – BSTCount
– Will do in class

• Written Assignment lists/trees due March 31
• New assignment Boggle due April 7

– Will do part of it in lab (last time, and next lab)

• Today
– More on trees and analysis with trees
– Recurrence relations

CompSci 100e, Spring2011 2

More on Trees

• Focus on binary trees
– Includes binary search trees
– Process tree: root (subtree) (subtree)
– Analyze recursive tree functions

• Recurrence relation

CompSci 100e, Spring2011 3

Review: Printing a search tree in order

• When is root printed?
– After left subtree, before right subtree.

 void visit(TreeNode t){
 if (t != null) {
 visit(t.left);
 System.out.println(t.info);
 visit(t.right);
 }
 }

• Inorder traversal
• How long for n nodes?

– O()?

“llama”

“tiger”

“monkey” “jaguar” “elephant”

“giraffe”

“pig” “hippo” “leopard”

4 CompSci 100e, Spring2011

Tree functions

• Compute height of a tree, what is complexity?

 int height(Tree root) {
 if (root == null) return 0;
 else {
 return 1 + Math.max(height(root.left),
 height(root.right));
 }
 }

• Modify function to compute number of nodes
in a tree, does complexity change?
– What about computing number of leaf nodes?

5 CompSci 100e, Spring2011

Balanced Trees and Complexity
• A tree is height-balanced if

– Left and right subtrees are height-balanced
– Left and right heights differ by at most one

 boolean isBalanced(Tree root){
 if (root == null) return true;
 return
 isBalanced(root.left) && isBalanced(root.right) &&
 Math.abs(height(root.left) – height(root.right)) <= 1;
 }
 }

6 CompSci 100e, Spring2011

What is complexity?
• Consider worst case? What does the tree look like?
• Consider average case? Assume trees are “balanced” in analyzing

complexity
– Roughly half the nodes in each subtree
– Leads to easier analysis

• How to develop recurrence relation?

– What is T(n)?
– What other work is done?

• How to solve recurrence relation – formula for recursion
• Plug, expand, plug, expand, find pattern

– A real proof requires induction to verify correctness

7 CompSci 100e, Spring2011

Solving Recurrence Relation
• Recurrence relation is a formula that models how

much time the method takes.
• T(n) – the time it takes to solve a problem of size n
• Basis – smallest case you know how to solve, such

as n=0 or n=1
• If two recursive calls formula might be:

– T(n) = T(smaller problem) + T(smaller problem) + work
to put answer together…

• On the right side, replace T(smaller) by plugging it
in to the formula

CompSci 100e, Spring2011 8

Solving Recurrence Relation (cont)

• Continue replacing the T(smaller) values until
you see a pattern – use k for the pattern

• Then solve for k with respect to N to get a
basis case that has a constant value – this
removes the T term from the right hand side
of the equation and you are left with T(N) = to
terms of N and can easily compute big-Oh

CompSci 100e, Spring2011 9

What is average big-Oh for height?

• Write a recurrence relation
• T(0) =
• T(1) =
• T(n) =

CompSci 100e, Spring2011 10

What is worst case big-Oh for height?

• Write a recurrence relation
• T(0) =
• T(1) =
• T(n) =

CompSci 100e, Spring2011 11

What is average case big-Oh for
is-balanced?

• Write a recurrence relation
• T(1) =
• T(n) =

CompSci 100e, Spring2011 12

Recognizing Recurrences

• Solve once, re-use in new contexts
– T must be explicitly identified
– n must be some measure of size of input/parameter

• T(n) is for quicksort to run on an n-element array

T(n) = T(n/2) + O(1) binary search O()
T(n) = T(n-1) + O(1) sequential search O()
T(n) = 2T(n/2) + O(1) tree traversal O()
T(n) = 2T(n/2) + O(n) quicksort O()
T(n) = T(n-1) + O(n) selection sort O()

• Remember the algorithm, re-derive complexity

13 CompSci 100e, Spring2011

Recognizing Recurrences

• Solve once, re-use in new contexts
– T must be explicitly identified
– n must be some measure of size of input/parameter

• T(n) is for quicksort to run on an n-element array

T(n) = T(n/2) + O(1) binary search O()
T(n) = T(n-1) + O(1) sequential search O()
T(n) = 2T(n/2) + O(1) tree traversal O()
T(n) = 2T(n/2) + O(n) quicksort O()
T(n) = T(n-1) + O(n) selection sort O()

• Remember the algorithm, re-derive complexity

n
log n

n log n
n

n2

14 CompSci 100e, Spring2011

BSTCount APT

• Given values for a binary search tree, how
many unique trees are there?
– 1 value = one tree
– 2 values = two trees
– 3 values = 5 trees
– N values = ? trees

• Will memoize help?

CompSci 100e, Spring2011 15

Recurrences
• If T(n) = T(n-1) + O(1)… where do we see this?
T(n) = T(n-1) + O(1)
 true for all X so, T(n-1) = T(n-2)+ O(1)
T(n) = [T(n-2) + 1] + 1 = T(n-2) + 2
 = [T(n-3) + 1] + 2 = T(n-3) + 3
• True for 1, 2, so eureka! We see a pattern
T(n) = T(n-k) + k, true for all k, let n=k
T(n) = T(n-n) + n = T(0) + n = n

• We could solve, we could prove, or remember!

16 CompSci 100e, Spring2011

	CompSci 100e�Program Design and Analysis II
	Announcements
	More on Trees
	Review: Printing a search tree in order
	Tree functions
	Balanced Trees and Complexity
	What is complexity?
	Solving Recurrence Relation
	Solving Recurrence Relation (cont)
	What is average big-Oh for height?
	What is worst case big-Oh for height?
	What is average case big-Oh for �is-balanced?
	Recognizing Recurrences
	Recognizing Recurrences
	BSTCount APT
	Recurrences

