CompSci 100e

Program Design and Analysis II

March 29, 2011

Prof. Rodger

Announcements

- One APT next week - BSTCount
- Will do in class
- Written Assignment lists/trees due March 31
- New assignment Boggle due April 7
- Will do part of it in lab (last time, and next lab)
- Today
- More on trees and analysis with trees
- Recurrence relations

More on Trees

- Focus on binary trees
- Includes binary search trees
- Process tree: root (subtree) (subtree)
- Analyze recursive tree functions
- Recurrence relation

Review: Printing a search tree in order

- When is root printed?
- After left subtree, before right subtree.

```
void visit(TreeNode t){
    if (t != null) {
        visit(t.left);
        System.out.príntln(t.info);
        visit(t.right);
\}
```

- Inorder traversal
- How long for n nodes?
- O()?

Tree functions

- Compute height of a tree, what is complexity?

```
int height(Tree root) {
    if (root == null) return 0;
    else {
            return 1 + Math.max(height(root.left),
                                    height(root.right) );
    }
}
```

- Modify function to compute number of nodes in a tree, does complexity change?
- What about computing number of leaf nodes?

Balanced Trees and Complexity

- A tree is height-balanced if
- Left and right subtrees are height-balanced - Left and right heights differ by at most one

What is complexity?

- Consider worst case? What does the tree look like?
- Consider average case? Assume trees are "balanced" in analyzing complexity
- Roughly half the nodes in each subtree
- Leads to easier analysis
- How to develop recurrence relation?
- What is T(n)?
- What other work is done?
- How to solve recurrence relation - formula for recursion
- Plug, expand, plug, expand, find pattern
- A real proof requires induction to verify correctness

Solving Recurrence Relation

- Recurrence relation is a formula that models how much time the method takes.
- $T(n)$ - the time it takes to solve a problem of size n
- Basis - smallest case you know how to solve, such as $\mathrm{n}=0$ or $\mathrm{n}=1$
- If two recursive calls formula might be:
$-T(n)=T(s m a l l e r ~ p r o b l e m)+T(s m a l l e r ~ p r o b l e m)+$ work to put answer together...
- On the right side, replace T (smaller) by plugging it in to the formula

Solving Recurrence Relation (cont)

- Continue replacing the T (smaller) values until you see a pattern - use k for the pattern
- Then solve for k with respect to N to get a basis case that has a constant value - this removes the T term from the right hand side of the equation and you are left with $T(N)=$ to terms of N and can easily compute big-Oh

What is average big-Oh for height?

- Write a recurrence relation
- $T(0)=$
- $T(1)=$
- $T(n)=$

What is worst case big-Oh for height?

- Write a recurrence relation
- $\mathrm{T}(0)=$
- $T(1)=$
- $T(n)=$

What is average case big-Oh for is-balanced?

- Write a recurrence relation
- $\mathrm{T}(1)=$
- $T(n)=$

Recognizing Recurrences

- Solve once, re-use in new contexts
- T must be explicitly identified
- n must be some measure of size of input/parameter
- $\mathrm{T}(\mathrm{n})$ is for quicksort to run on an n -element array

| $T(n)=T(n / 2)+0(1)$ | binary search |
| :--- | :--- | :--- |
| $T(n)=T(n-1)+0(1)$ | sequential search |
| $T(n)=2 T(n / 2)+0(1)$ | tree traversal |
| $T(n)=2 T(n / 2)+0(n)$ | quicksort |
| $T(n)=T(n-1)+0(n)$ | selection sort |

- Remember the algorithm, re-derive complexity

Recognizing Recurrences

- Solve once, re-use in new contexts
- T must be explicitly identified
- n must be some measure of size of input/parameter
- $\mathrm{T}(\mathrm{n})$ is for quicksort to run on an n -element array

| $T(n)=T(n / 2)+0(1)$ | binary search |
| :--- | :--- | :--- |
| $T(n)=T(n-1)+0(1)$ | sequential search |
| $T(n)=2 T(n / 2)+0(1)$ | tree traversal |
| $T(n)=2 T(n / 2)+0(n)$ | quicksort |
| $T(n)=T(n-1)+0(n)$ | selection sort |

- Remember the algorithm, re-derive complexity

BSTCount APT

- Given values for a binary search tree, how many unique trees are there?
-1 value = one tree
-2 values = two trees
-3 values $=5$ trees
-N values $=$? trees
- Will memoize help?

Recurrences

- If $T(n)=T(n-1)+O(1) \ldots$ where do we see this?
$T(n)=T(n-1)+0(1)$ true for all X so, $T(n-1)=T(n-2)+0(1)$
$T(n)=[T(n-2)+1]+1=T(n-2)+2$

$$
=[T(n-3)+1]+2=T(n-3)+3
$$

- True for 1, 2 , so eureka! We see a pattern
$T(n)=T(n-k)+k$, true for all k, let $n=k$
$T(n)=T(n-n)+n=T(0)+n=n$
- We could solve, we could prove, or remember!

