

CompSci 100e Program Design and Analysis II

March 29, 2011

Prof. Rodger

Announcements

- One APT next week BSTCount
 Will do in class
- Written Assignment lists/trees due March 31
- New assignment Boggle due April 7
 Will do part of it in lab (last time, and next lab)
- Today
 - More on trees and analysis with trees
 - Recurrence relations

More on Trees

- Focus on binary trees
 - Includes binary search trees
 - Process tree: root (subtree) (subtree)
 - Analyze recursive tree functions
 - Recurrence relation

Review: Printing a search tree in order

• When is *root* printed?

- After left subtree, before right subtree.

Tree functions

• Compute height of a tree, what is complexity?

- Modify function to compute number of nodes in a tree, does complexity change?
 - What about computing number of leaf nodes?

Balanced Trees and Complexity

- A tree is height-balanced if
 - Left and right subtrees are height-balanced

- Left and right heights differ by at most one

```
boolean isBalanced(Tree root){
    if (root == null) return true;
    return
        isBalanced(root.left) && isBalanced(root.right) &&
        Math.abs(height(root.left) - height(root.right)) <= 1;
    }
}</pre>
```

What is complexity?

- Consider worst case? What does the tree look like?
- Consider average case? Assume trees are "balanced" in analyzing complexity
 - Roughly half the nodes in each subtree
 - Leads to easier analysis
- How to develop recurrence relation?
 - What is T(n)?
 - What other work is done?
- How to solve recurrence relation formula for recursion
- Plug, expand, plug, expand, find pattern
 - A real proof requires induction to verify correctness

Solving Recurrence Relation

- Recurrence relation is a formula that models how much time the method takes.
- T(n) the time it takes to solve a problem of size n
- Basis smallest case you know how to solve, such as n=0 or n=1
- If two recursive calls formula might be:
 - T(n) = T(smaller problem) + T(smaller problem) + work
 to put answer together...
- On the right side, replace T(smaller) by plugging it in to the formula

Solving Recurrence Relation (cont)

- Continue replacing the T(smaller) values until you see a pattern – use k for the pattern
- Then solve for k with respect to N to get a basis case that has a constant value – this removes the T term from the right hand side of the equation and you are left with T(N) = to terms of N and can easily compute big-Oh

What is average big-Oh for height?

- Write a recurrence relation
- T(0) =
- T(1) =
- T(n) =

What is worst case big-Oh for height?

- Write a recurrence relation
- T(0) =
- T(1) =
- T(n) =

What is average case big-Oh for is-balanced?

- Write a recurrence relation
- T(1) =
- T(n) =

Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is for quicksort to run on an n-element array

T(n)	= T(n/2)	+ O(1) binary	y search	О()
T(n)	= T(n-1)	+ O(1) seque	ential search	Ο ()
T(n)	= 2T(n/2)	+ O(1) tree t	raversal	О()
T(n)	= 2T(n/2)	+ O(n) quick	sort	Ο ()
T(n)	= T(n-1)	+ O(n) select	ion sort	О()

• Remember the algorithm, re-derive complexity

Recognizing Recurrences

- Solve once, re-use in new contexts
 - T must be explicitly identified
 - n must be some measure of size of input/parameter
 - T(n) is for quicksort to run on an n-element array

T(n)	=	T(n/2)	+	0(1)	binary search	C)(log n)
T(n)	=	T(n-1)	+	0(1)	sequential search	Ο(n)	
T(n)	=	2T(n/2)	+	0(1)	tree traversal	C)(n)
T(n)	=	2T(n/2)	+	O(n)	quicksort	Ο(n log n)	
T(n)	=	T(n-1)	+	O(n)	selection sort	C)(n²)

• Remember the algorithm, re-derive complexity

BSTCount APT

- Given values for a binary search tree, how many unique trees are there?
 - 1 value = one tree
 - 2 values = two trees
 - -3 values = 5 trees
 - N values = ? trees
- Will memoize help?

Recurrences

If T(n) = T(n-1) + O(1)... where do we see this? T(n) = T(n-1) + O(1) true for all X so, T(n-1) = T(n-2) + O(1) T(n) = [T(n-2) + 1] + 1 = T(n-2) + 2 = [T(n-3) + 1] + 2 = T(n-3) + 3
True for 1, 2, so eureka! We see a pattern T(n) = T(n-k) + k, true for all k, let n=k

T(n) = T(n-n) + n = T(0) + n = n

• We could solve, we could prove, or remember!