
CompSci 100e
Program Design and Analysis II

April 26, 2011

Prof. Rodger

CompSci 100e, Spring2011 1

Presenter
Presentation Notes
Skip 13, 15 and 21 for handout

Announcements

• Things due this week:
– APTs due today, Apr 26
– Extra credit assignments due Wed, Apr 27
– No late assignments accepted after Wed night!

• Today
– Test 2 back – solutions posted on calendar page
– Balanced Trees
– Sorting

CompSci 100e, Spring2011 2

Final Exam
• Final Exam – Wed, May 4, 7-10pm

– Same room, old Chem 116
– Covers topics up through today
– Closed book, closed notes
– Can bring 4 sheets of paper with your name on it

• Study - practice writing code on paper
– From tests this semester, from old tests
– From classwork, labs, assignments, apts….

• Will have different office hours til exam
– will post on front page of CompSci 100e web page
– Subject to change, check before coming over

CompSci 100e, Spring2011 3

Sorting: From Theory to Practice

• Why study sorting?
– Example of algorithm analysis in a simple, useful

setting
– Lots of sorts

• Compare running times
• Compare number of swaps

• http://www.sorting-algorithms.com/

4 CompSci 100e, Spring2011

http://www.sorting-algorithms.com/

Sorting out sorts
• Simple, O(n2) sorts --- for sorting n elements

– Selection sort --- n2 comparisons, n swaps, easy to code
– Insertion sort --- n2 comparisons, n2 moves, stable, fast, can

finish early
– Bubble sort --- n2 everything, easiest to code, slowest, ugly

• Divide and conquer sorts: O(n log n) for n elements

– Quick sort: fast in practice, O(n2) worst case
– Merge sort: good worst case, great for linked lists, uses

extra storage for vectors/arrays

• Other sorts:
– Heap sort, basically priority queue sorting O(n log n)
– Radix sort: doesn’t compare keys, uses digits/characters
– Shell sort: quasi-insertion, fast in practice, non-recursive

5 CompSci 100e, Spring2011

Selection sort: summary
• Simple to code n2 sort: n2 comparisons, only n swaps
• Repeat: Find next min, put it in its place in sorted order

void selectSort(String[] a) {
 int len = a.length;
 for(int k=0; k < len; k++){
 int mindex = getMinIndex(a,k,len);
 swap(a,k,mindex);
 }
}

• # comparisons
– Swaps?
– Invariant:

Σ
k=1

n
k = 1 + 2 + … + n = n(n+1)/2 = O(n2)

Sorted, won’t move
final position

?????

6 CompSci 100e, Spring2011

SelectionSort
• Start starting 2nd pass

• Starting 3rd pass starting 4th pass

CompSci 100e, Spring2011 7

Insertion Sort: summary
• Stable sort, O(n2), good on nearly sorted vectors

– Stable sorts maintain order of equal keys
– Good for sorting on two criteria: name, then age

void insertSort(String[] a){
 int k, loc; String elt;
 for(k=1; k < a.length; ++k) {
 elt = a[k];
 loc = k;
 // shift until spot for elt is found
 while (0 < loc && elt.compareTo(a[loc-1]) < 0) {
 a[loc] = a[loc-1]; // shift right
 loc=loc-1;
 }
 a[loc] = elt;
 }
} Sorted relative to

each other
?????

8 CompSci 100e, Spring2011

Insertion Sort
• Start in 4th pass

• Several later passes after more passes

CompSci 100e, Spring2011 9

Bubble sort: summary of a dog
• For completeness you should know about this sort

– Really, really slow (to run), really really fast (to code)
– Can code to recognize already sorted vector (see insertion)

• Not worth it for bubble sort, much slower than insertion

void bubbleSort(String[] a){
 for(int j=a.length-1; j >= 0; j--) {
 for(int k=0; k < j; k++) {
 if (a[k] > a[k+1])
 swap(a,k,k+1);
 }
 }
}

• “bubble” elements down the vector/array

Sorted, in final
position

?????

10 CompSci 100e, Spring2011

Bubble sort
• Start starting 2nd pass

• Starting 3rd pass starting 4th pass

CompSci 100e, Spring2011 11

Summary of simple sorts
• Selection sort has n swaps, good for “heavy” data

– moving objects with lots of state, e.g., …
• In C or C++ this is an issue
• In Java everything is a pointer/reference, so swapping is fast

since it's pointer assignment

• Insertion sort good on nearly sorted data, stable!
– Also foundation for Shell sort, very fast non-recursive
– More complicated to code, but relatively simple, and

fast

• Bubble sort is a travesty? But it's fast to code if
you know it!
– Can be parallelized, but on one machine don’t go

near it

12 CompSci 100e, Spring2011

Quicksort: fast in practice
• Invented in 1962 by C.A.R. Hoare, didn’t

understand recursion
– Worst case is O(n2), but avoidable in nearly all cases
– In 1997 Introsort published (Musser, introspective

sort)
• Like quicksort in practice, but recognizes when it will be bad and changes to

heapsort

void quick(String[], int left, int right){
 if (left < right) {
 int pivot = partition(a,left,right);
 quick(a,left,pivot-1);
 quick(a,pivot+1, right);
 }
}

• Recurrence? <= X > X X

pivot index

13 CompSci 100e, Spring2011

Partition code for quicksort

left

• Easy to develop partition

int partition(String[] a,
 int left, int right)
{
 string pivot = a[left];
 int k, pIndex = left;
 for(k=left+1, k <= right; k++) {
 if (a[k].compareTo(pivot) <= 0){
 pIndex++;
 swap(a,k,pIndex);
 }
 }
 swap(a,left,pIndex);
}

• loop invariant:
– statement true each time loop test is

evaluated, used to verify correctness
of loop

• Can swap into a[left] before loop
– Nearly sorted data still ok

??????????????

<= > ???

<= pivot > pivot

pIndex
left right

right

what we want

what we have

invariant

left right
pIndex k

Analysis of Quicksort
• Average case and worst case analysis

– Recurrence for worst case: T(n) =
– What about average?

• Reason informally:
– Two calls vector size n/2
– Four calls vector size n/4
– … How many calls? Work done on each call?

• Partition: median of three, then sort

– Avoid bad performance on nearly sorted data

15 CompSci 100e, Spring2011

Merge sort: worst case O(n log n)
• Divide and conquer --- recursive sort

– Divide list/vector into two halves
• Sort each half
• Merge sorted halves together

– What is complexity of merging two sorted lists?
– What is recurrence relation for merge sort as

described?
T(n) =

• Advantage of array over linked-list for merge sort?

– What about merging, advantage of linked list?
– Array requires auxiliary storage (or very fancy coding)

17 CompSci 100e, Spring2011

Merge sort: lists or arrays or …

• Mergesort for arrays

void mergesort(String[] a, int left, int right){
 if (left < right) {
 int mid = (right+left)/2;
 mergesort(a, left, mid);
 mergesort(a, mid+1, right);
 merge(a,left,mid,right);
 }
}

• What’s different when linked lists used?
– Do differences affect complexity? Why?

• How does merge work?

19 CompSci 100e, Spring2011

Summary of O(n log n) sorts
• Quicksort straight-forward to code, very fast

– Worst case is very unlikely, but possible, therefore …
– But, if lots of elements are equal, performance will be bad

• One million integers from range 0 to 10,000
• How can we change partition to handle this?

• Merge sort is stable, it’s fast, good for linked
lists, harder to code?
– Worst case performance is O(n log n), compare quicksort
– Extra storage for array/vector

• Heapsort, good worst case, not stable,
coding?
– Basically heap-based priority queue in a vector

20 CompSci 100e, Spring2011

Other sorts

• Shellsort
– Divide and conquer approach then insertion sort kicks

in
– Named after?

• Timsort
– Sort in python
– Named after?
– Derived from mergesort and insertionsort
– Very fast on real world data, using far fewer than the

worst case of O(n log n)

CompSci 100e, Spring2011 21

Presenter
Presentation Notes
Tim sort is named after Tim Peters

ShellSort
• Start starting 2nd pass

• Starting 3rd pass starting 4th pass

CompSci 100e, Spring2011 22

Sorting in practice
• Rarely will you need to roll your own sort, but when

you do …
– What are key issues?

• If you use a library sort, you need to understand the

interface
– In C++ we have STL

• STL has sort, and stable_sort

– In C sort is complex to use because arrays are ugly
– In Java guarantees and worst-case are important

• Why won’t quicksort be used?

• Comparators allow sorting criteria to change

23 CompSci 100e, Spring2011

Non-comparison-based sorts
• lower bound: Ω(n log n) for

comparison based sorts (like
searching lower bound)

• bucket sort/radix sort are not-
comparison based, faster
asymptotically and in practice

• sort a vector of ints, all ints in the

range 1..100, how?
– (use extra storage)

• radix: examine each digit of
numbers being sorted
– One-pass per digit
– Sort based on digit

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

23 34 56 25 44 73 42 26 10 16

10 42 23 73 34 44 25 56 26 16

10 16 23 25 26 34 42 44 56 73

	CompSci 100e�Program Design and Analysis II
	Announcements
	Final Exam
	Sorting: From Theory to Practice
	Sorting out sorts
	Selection sort: summary
	SelectionSort
	Insertion Sort: summary
	Insertion Sort
	Bubble sort: summary of a dog
	Bubble sort
	Summary of simple sorts
	Quicksort: fast in practice
	Partition code for quicksort
	Analysis of Quicksort
	Analysis of Quicksort
	Merge sort: worst case O(n log n)
	Merge sort: worst case O(n log n)
	Merge sort: lists or arrays or …
	Summary of O(n log n) sorts
	Other sorts
	ShellSort
	Sorting in practice
	Non-comparison-based sorts
	Non-comparison-based sorts

