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Announcements 

• Things due this week: 
– APTs due today, Apr 26 
– Extra credit assignments due Wed, Apr 27 
– No late assignments accepted after Wed night! 

• Today 
– Test 2 back – solutions posted on calendar page 
– Balanced Trees 
– Sorting 
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Final Exam 
• Final Exam – Wed, May 4, 7-10pm  

– Same room, old Chem 116 
– Covers topics up through today 
– Closed book, closed notes 
– Can bring 4 sheets of paper with your name on it 

• Study - practice writing code on paper 
– From tests this semester, from old tests 
– From classwork, labs, assignments, apts…. 

• Will have different office hours til exam 
– will post on front page of CompSci 100e web page 
– Subject to change, check before coming over 
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Sorting: From Theory to Practice 

• Why study sorting? 
– Example of algorithm analysis in a simple, useful 

setting 
– Lots of sorts 

• Compare running times 
• Compare number of swaps 

• http://www.sorting-algorithms.com/ 
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Sorting out sorts 
• Simple, O(n2) sorts --- for sorting n elements 

– Selection sort --- n2 comparisons, n swaps, easy to code 
– Insertion sort --- n2 comparisons, n2 moves, stable, fast, can 

finish early 
– Bubble sort --- n2 everything, easiest to code, slowest, ugly 

 
• Divide and conquer sorts: O(n log n) for n elements 

– Quick sort: fast in practice, O(n2) worst case 
– Merge sort: good worst case, great for linked lists, uses 

extra storage for vectors/arrays 
 

• Other sorts: 
– Heap sort, basically priority queue sorting O(n log n) 
– Radix sort: doesn’t compare keys, uses digits/characters 
– Shell sort: quasi-insertion, fast in practice, non-recursive 
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Selection sort: summary 
• Simple to code n2 sort: n2 comparisons, only n swaps 
• Repeat: Find next min, put it in its place in sorted order 

 
void selectSort(String[] a) {  
    int len = a.length;   
    for(int k=0; k < len; k++){ 
        int mindex = getMinIndex(a,k,len); 
        swap(a,k,mindex); 
    } 
} 
 

• # comparisons 
– Swaps? 
– Invariant: 

Σ 
k=1 

n 
k = 1 + 2 + … + n = n(n+1)/2 = O(n2) 

Sorted, won’t move 
final position 

????? 
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SelectionSort 
• Start                               starting 2nd  pass 

 
 
 
 

• Starting 3rd pass            starting 4th pass 
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Insertion Sort: summary 
• Stable sort, O(n2), good on nearly sorted vectors 

– Stable sorts maintain order of equal keys 
– Good for sorting on two criteria: name, then age 
 
void insertSort(String[] a){ 
    int k, loc; String elt; 
    for(k=1; k < a.length; ++k) { 
       elt = a[k]; 
       loc = k; 
       // shift until spot for elt is found 
       while (0 < loc && elt.compareTo(a[loc-1]) < 0) { 
           a[loc] = a[loc-1];   // shift right 
           loc=loc-1; 
       } 
       a[loc] = elt; 
    } 
} Sorted relative to 

each other 
????? 
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Insertion Sort 
• Start                               in 4th pass 

 
 
 
 

• Several later passes        after more passes 

CompSci 100e, Spring2011 9 



Bubble sort: summary of a dog 
• For completeness you should know about this sort 

– Really, really slow (to run), really really fast (to code) 
– Can code to recognize already sorted vector (see insertion) 

• Not worth it for bubble sort, much slower than insertion 
 

void bubbleSort(String[] a){    
    for(int j=a.length-1; j >= 0; j--) { 
         for(int k=0; k < j; k++) { 
             if (a[k] > a[k+1]) 
                 swap(a,k,k+1);     
         } 
    } 
} 

• “bubble” elements down the vector/array 

Sorted, in final  
position 

????? 
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Bubble sort 
• Start                               starting 2nd  pass 

 
 
 
 

• Starting 3rd pass            starting 4th pass 
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Summary of simple sorts 
• Selection sort has n swaps, good for “heavy” data 

– moving objects with lots of state, e.g., … 
• In C or C++ this is an issue 
• In Java everything is a pointer/reference, so swapping is fast 

since it's pointer assignment 
 

• Insertion sort good on nearly sorted data, stable! 
– Also foundation for Shell sort, very fast non-recursive 
– More complicated to code, but relatively simple, and 

fast 
 

• Bubble sort is a travesty? But it's fast to code if 
you know it! 
– Can be parallelized, but on one machine don’t go 

near it 
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Quicksort: fast in practice 
• Invented in 1962 by C.A.R. Hoare, didn’t 

understand recursion 
– Worst case is O(n2), but avoidable in nearly all cases 
– In 1997 Introsort published (Musser, introspective 

sort) 
• Like quicksort in practice, but recognizes when it will be bad and changes to 

heapsort 
 

void quick(String[], int left, int right){ 
    if (left < right) { 
         int pivot = partition(a,left,right); 
         quick(a,left,pivot-1); 
         quick(a,pivot+1, right); 
    } 
} 

• Recurrence? <= X  > X  X  

pivot index 
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Partition code for quicksort 

left 

• Easy to develop partition 
 
int partition(String[] a, 
              int left, int right) 
{ 
    string pivot = a[left]; 
    int k, pIndex = left; 
    for(k=left+1, k <= right; k++) { 
       if (a[k].compareTo(pivot) <= 0){ 
          pIndex++; 
          swap(a,k,pIndex); 
       } 
    } 
    swap(a,left,pIndex); 
} 

• loop invariant: 
– statement true each time loop test is 

evaluated, used to verify correctness 
of loop 

• Can swap into a[left] before loop 
– Nearly sorted data still ok 

?????????????? 

<= > ??? 

<= pivot > pivot 

pIndex 
left right 

right 

what we want 

what we have 

invariant 

left right 
pIndex k 



Analysis of Quicksort 
• Average case and worst case analysis 

– Recurrence for worst case:  T(n) = 
– What about average? 

• Reason informally: 
– Two calls vector size n/2 
– Four calls vector size n/4 
– … How many calls? Work done on each call? 

 
• Partition: median of three, then sort 

– Avoid bad performance on nearly sorted data 
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Merge sort: worst case O(n log n) 
• Divide and conquer --- recursive sort 

– Divide list/vector into two halves 
• Sort each half 
• Merge sorted halves together 

– What is complexity of merging two sorted lists? 
– What is recurrence relation for merge sort as 

described? 
T(n) =  

 
• Advantage of array over linked-list for merge sort? 

– What about merging, advantage of linked list? 
– Array requires auxiliary storage (or very fancy coding) 
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Merge sort: lists or arrays or … 

• Mergesort for arrays 
 
void mergesort(String[] a, int left, int right){ 
    if (left < right) { 
         int mid = (right+left)/2; 
         mergesort(a, left, mid); 
         mergesort(a, mid+1, right); 
         merge(a,left,mid,right); 
    } 
} 

• What’s different when linked lists used? 
– Do differences affect complexity? Why? 

 
• How does merge work? 
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Summary of O(n log n) sorts 
• Quicksort straight-forward to code, very fast 

– Worst case is very unlikely, but possible, therefore … 
– But, if lots of elements are equal, performance will be bad 

• One million integers from range 0 to 10,000 
• How can we change partition to handle this? 

 

• Merge sort is stable, it’s fast, good for linked 
lists, harder to code? 
– Worst case performance is O(n log n), compare quicksort 
– Extra storage for array/vector 

 

• Heapsort, good worst case, not stable, 
coding? 
– Basically heap-based priority queue in a vector 
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Other sorts 

• Shellsort  
– Divide and conquer approach then insertion sort kicks 

in 
– Named after? 

• Timsort 
– Sort in python 
– Named after?  
– Derived from mergesort and insertionsort 
– Very fast on real world data, using far fewer than the 

worst case of O(n log n) 
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ShellSort 
• Start                               starting 2nd  pass 

 
 
 
 

• Starting 3rd pass            starting 4th pass 
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Sorting in practice 
• Rarely will you need to roll your own sort, but when 

you do … 
– What are key issues? 

 
• If you use a library sort, you need to understand the 

interface 
– In C++ we have STL 

• STL has sort, and stable_sort 

– In C sort is complex to use because arrays are ugly 
– In Java guarantees and worst-case are important 

• Why won’t quicksort be used? 

• Comparators allow sorting criteria to change 
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Non-comparison-based sorts 
• lower bound: Ω(n log n) for 

comparison based sorts (like 
searching lower bound) 

• bucket sort/radix sort are not-
comparison based, faster 
asymptotically and in practice  

 
• sort a vector of ints, all ints in the 

range 1..100, how? 
– (use extra storage) 

• radix: examine each digit of 
numbers being sorted 
– One-pass per digit 
– Sort based on digit 

0 1 2 3 4 5 6 7 8 9 

0 1 2 3 4 5 6 7 8 9 

23 34 56 25 44 73 42 26 10 16 

10 42 23 73 34 44 25 56 26 16 

10 16 23 25 26 34 42 44 56 73 
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