Feb 15, 2011

\[Q' = Q \cup \{ q_5, q_6 \} \]

\[\Gamma' = \Gamma \cup \left\{ z \right\} \]

\(q_5 \) is new start state

\(F' = \{ \} \) anything doesn't matter

\(F = \) doesn't matter
Empty stack \rightarrow final state

\[Q' = Q \cup \{q_0, q_f^3\} \]

\[F' = F \cup \{q_3\} \]

q_0 is new start state
GNF

all prod in the form

\[A \to ax \]

\[A \in V, \ a \in T, \ x \in V^* \]

Construct NPDA

\[M = (Q, \Sigma, \Gamma, \delta, q_0, Z, F) \]
\[Q = \{ q_0, q_1, q_f \} \]

\[\Sigma = \{ \sigma \} \]

\[\Gamma = \{ \Sigma, \{ \Sigma \} \} \]

\[F = \{ q_f \} \]

1. Start by putting \(S \) on stack

2. For each prod

\[A \rightarrow a X_1 X_2 \ldots X_n \]
put \((q_1, x_1, x_2, \ldots, x_n) \) in \(S(q_1, q_1, A) \)

3. Accept if \(S \downarrow w \)

replace all variables on stack
Replace by

$q_i \xrightarrow{a, A; CD} (q_i, B, C; BD) \xrightarrow{\lambda, C; BC} (q_j, B; BB) \xrightarrow{\lambda, B; BB} q_j$
replace

\[a, A, B \]

by

\[a, A, AB \]

\[\text{arrows} \]

\[a, A, r, A, z \]

\[\text{arrows} \]

\[a, A, AB \]

\[\text{arrows} \]

\[\text{arrows} \]