Deterministic Finite Accepter (or Automata)

A DFA = \((Q, \Sigma, \delta, q_0, F) \)

where

- \(Q \) is finite set of states
- \(\Sigma \) is tape (input) alphabet
- \(q_0 \) is initial state
- \(F \) is set of final states.
- \(\delta: Q \times \Sigma \rightarrow Q \)

Example: Create a DFA that accepts even binary numbers.

Transition Diagram:

<table>
<thead>
<tr>
<th>q0</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example of a move: \(\delta(q_0,1) = \)
Algorithm for DFA:

Start in start state with input on tape
q = current state
s = current symbol on tape
while (s != blank) do
\[q = \delta(q, s) \]
s = next symbol to the right on tape
if q \in F then accept

Example of a trace: 11010

Pictorial Example of a trace for 100:

Definition:
\[\delta^*(q, \lambda) = q \]
\[\delta^*(q, wa) = \delta(\delta^*(q, w), a) \]

Definition The language accepted by a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) is set of all strings on \(\Sigma \) accepted by \(M \). Formally,
\[L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \in F \} \]
Trap State

Example: \(L(M) = \{ b^n a \mid n > 0 \} \)

![Diagram of DFA with trap state]

You don’t need to show trap states! Any arc not shown will by default go to a trap state.

Example: Create a DFA that accepts even binary numbers that have an even number of 1’s.

Example:

\[
L = \{ w \in \Sigma^* \mid w \text{ has an even number of a’s and an even number of b’s} \}
\]

Definition A language is regular iff there exists DFA \(M \) s.t. \(L = L(M) \).
Chapter 2.2
Nondeterministic Finite Automata (or Accepter)

Definition
An NFA=$\langle Q, \Sigma, \delta, q_0, F \rangle$

where
\(Q \) is finite set of states
\(\Sigma \) is tape (input) alphabet
\(q_0 \) is initial state
\(F \subseteq Q \) is set of final states.
\(\delta: Q \times (\Sigma \cup \{\lambda\}) \rightarrow 2^Q \)

Example

Note: In this example \(\delta(q_0, a) = \)

\(L= \)

Example

\(L=\{(ab)^n \mid n > 0\} \cup \{a^n b \mid n > 0\} \)

Definition \(q_j \in \delta^*(q_i, w) \) if and only if there is a walk from \(q_i \) to \(q_j \) labeled \(w \).

Example From previous example:

\(\delta^*(q_0, ab)= \)

\(\delta^*(q_0, aba)= \)

Definition: For an NFA \(M \), \(L(M)=\{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\} \)

The language accepted by nfa \(M \) is all strings \(w \) such that there exists a walk labeled \(w \) from the start state to final state.
2.3 NFA vs. DFA: Which is more powerful?

Example:

\[
\begin{array}{c}
\text{q0} \\
\text{\rightarrow a} \\
\text{\rightarrow b} \\
\text{\rightarrow q2} \\
\end{array}
\]

\[
\begin{array}{c}
\text{q1} \\
\text{\rightarrow b} \\
\end{array}
\]

Theorem Given an NFA \(M_N = (Q_N, \Sigma, \delta_N, q_0, F_N) \), then there exists a DFA \(M_D = (Q_D, \Sigma, \delta_D, q_0, F_D) \) such that \(L(M_N) = L(M_D) \).

Proof:

We need to define \(M_D \) based on \(M_N \).

\(Q_D = \) \\
\(F_D = \) \\
\(\delta_D : \)

Algorithm to construct \(M_D \)

1. start state is \(\{q_0\} \cup \text{closure}(q_0) \)
2. While can add an edge
 (a) Choose a state \(A = \{q_i, q_j, \ldots q_k\} \) with missing edge for \(a \in \Sigma \)
 (b) Compute \(B = \delta^*(q_i, a) \cup \delta^*(q_j, a) \cup \ldots \cup \delta^*(q_k, a) \)
 (c) Add state \(B \) if it doesn’t exist
 (d) add edge from \(A \) to \(B \) with label \(a \)
3. Identify final states
4. if \(\lambda \in L(M_N) \) then make the start state final.
Example:

Minimizing Number of states in DFA

Why?

Algorithm

- Identify states that are indistinguishable
 These states form a new state

Definition Two states p and q are indistinguishable if for all $w \in \Sigma^*$

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \in F \\
\delta^*(p, w) \notin F \Rightarrow \delta^*(q, w) \notin F
\]

Definition Two states p and q are distinguishable if $\exists w \in \Sigma^*$ s.t.

\[
\delta^*(q, w) \in F \Rightarrow \delta^*(p, w) \notin F \text{ OR} \\
\delta^*(q, w) \notin F \Rightarrow \delta^*(p, w) \in F
\]
Example:
Example:
Properties and Proving - Problem 1

Consider the property Replace one a with b or R1awb for short. If L is a regular, prove R1awb(L) is regular.

The property R1awb applied to a language L replaces one a in each string with a b. If a string does not have an a, then the string is not in R1awb(L).
Properties and Proving - Problem 2

Consider the property Truncate_all_preceeding_b’s or TruncPreb for short. If L is a regular, prove TruncPreb(L) is regular.

The property TruncPreb applied to a language L removes all preceeding b’s in each string. If a string does not have an preceeding b, then the string is the same in TruncPreb(L).