
Implementing Reed-Solomon
Andrew Brown

Implementing Reed-Solomon – p. 1

Recall

Reed-Solmon represents messages as polynomials
and over-samples them for redundancy.

An (n, k, n − k + 1) code has
k digit messages
n digit codewords
n − k + 1 distance between codewords (at least)
(n − k)/2 errors before it cannot be decoded
2s = n − k

In this presentation, all messages and codewords are
over the finite field GF (28). This makes byte-oriented
implementation easy

Implementing Reed-Solomon – p. 2

Recall

Generator Polynomial:

g(x) = (x − α)(x − α2) · · · (x − αn−k)

α is a generator element in GF (28)

Encoding Process:
m is the message encoded as a polynomial

m′ = mx2s

b = m′ (mod g)
m′ = qg + b for some q

c = m′ − b

Codewords are multiples of g, and are systematic

Verifying a codeword is valid is a matter of checking for
divisibility by g

Implementing Reed-Solomon – p. 3

Decoding Procedure Overview

1. Calculate Syndromes

2. Berlekamp-Massey Algorithm - calculates the Error Locator
Polynomials and Error Evaluator Polynomials

3. Chien Search - Finds the error locations using the Error
Locator Polynomial

4. Forney’s Formula - Finds the error magnitudes using the
error evaluator polynomial

5. Correct the Errors

Implementing Reed-Solomon – p. 4

Decoding (Defining Terms)

Error Polynomial

R(x) = C(x) + E(x)

E(x) = E0 + E1x + · · · + En−1x
n−1

Has at most s coefficients that are non-zero

Error Positions
j1, j2, · · · js, each a value between 0 and n − 1

Error Locations
Xi = αji

Error Magnitudes
Yi = Eji

Notice that there are 2s unknowns
Implementing Reed-Solomon – p. 5

Decoding (Syndromes)

Step 1: Calculate the first 2s syndromes

Syndromes are defined for all l:

sl =
s∑

i=1

YiX
l
i

For the first 2s, it reduces to:

sl = E(αl) =
s∑

i=1

Yiα
lji 1 ≤ l ≤ 2s

sl = R(αl) = E(αl) for the first 2s powers of α.

Equivalent to having 2s equations with 2s unknowns

Implementing Reed-Solomon – p. 6

Decoding (Syndromes)

Encode the syndromes in a generator polynomial:

s(z) =
∞∑

i=1

siz
i

This can be computed by finding each si from the
received codeword for the first 2s values. That’s all we
need though.

Implementing Reed-Solomon – p. 7

Berlekamp-Massey Algorithm

Input: Syndrome polynomial from the last slide

Output: Error Locator Polynomial σ(z) and Error
Evaluator Polynomial ω(z). Defined as:

σ(z) =
s∏

i=1

(1 − Xiz)

ω(z) = σ(z) +
s∑

i=1

zXiYi

s∏

j=1
j 6=i

(1 − Xjz)

Notice that the error locations are the inverse roots of
σ(z). (Roots are 1/X1, 1/X2, · · · 1/Xs)

Implementing Reed-Solomon – p. 8

B-M (The Key Equation)

Observe the following relation:

ω(z)

σ(z)
= 1 +

s∑

i=1

zXiYi

1 − Xiz

= ...intermediate steps omitted
= 1 + s(z)

Key equation thus states:

(1 + s(z))σ(z)
(mod z2s+1)

= ω(z)

σ(z) and ω(z) have degree at most s

Key Equation represents a set of 2s equations and 2s
unknowns

Implementing Reed-Solomon – p. 9

B-M (procedure)

B-M iterates 2s times

At each iteration, it produces a pair of polynomials:

(σ(l)(z), ω(l)(z))

where the polynomials satisfy that iteration’s key
equation:

(1 + s(z))σ(l)(z)
(mod zl+1)

= ω(l)(z)

Implementing Reed-Solomon – p. 10

B-M (procedure)

Once we have
(σ(l)(z), ω(l)(z))

for some l. If we’re lucky, they already satisfy the next
key equation:

(1 + s(z))σ(l)(z)
(mod z(l+2))

= ω(l)(z)

in which case we can set σ(l+1)(z) = σ(l)(z) and similarly
for ω(z)

However, usually we have an unwanted higher-order
term:

(1 + s(z))σ(l)(z)
(mod zl+2)

= ω(l)(z) + ∆(l)z
l+1

Implementing Reed-Solomon – p. 11

B-M (procedure)

∆(l) is the non-zero coefficient of zl+1 in (1 + s(z))σ(l)(z)

Basic idea is to iteratively improve estimates of σ and ω

But since there may be a higher order term, we can’t
always just extend to l + 1 from iteration l

A complex set of rules determines how to handle
different cases

The next 5 slides describe these cases and how to
handle them

Implementing Reed-Solomon – p. 12

B-M (Details)

∆(l) is the non-zero coefficient in (1 + s(z))σ(l)(z)

To find the next iteration’s polynomials, we introduce
two more polynomials τ(l)(z) and γ(l)(z)

They must satisfy:

(1 + s(z))τ(l)(z)
(mod zl+1)

= γ(l)(z) + zl

And we have the following rules to derive the next σ and
ω:

σ(l+1)(z) = σ(l)(z) − ∆(l)zτ(l)(z)

ω(l+1)(z) = ω(l)(z) − ∆(l)zγ(l)(z)

Implementing Reed-Solomon – p. 13

B-M (Details)

But how to compute τ(l+1)(z) and γ(l+)(z)?

Use one of the following rules:

τ(l+1)(z) = zτ(l)(z)(A)

γ(l+1)(z) = zγ(l)(z)

τ(l+1)(z) =
σ(l)(z)

∆(l)
(B)

γ(l+1)(z) =
ω(l)(z)

∆(l)

Implementing Reed-Solomon – p. 14

B-M (Details)

One of (A) or (B) is chosen each iteration to minimize
the degrees of τ(l+1)(z) and γ(l+1)(z)

To choose, define a single value D(l) for each iteration

Choose rule (A) if ∆(l) = 0 or D(l) > l+1
2

Choose rule (B) if ∆(l) 6= 0 and D(l) < l+1
2

With rule (A) set D(l+1) = D(l)

With rule (B) set D(l+1) = l + 1 − D(l)

These rules and conditions ensure 0 < D(l+1) ≤ l + 1

and the degrees of σ(l+1) and ω(l+1) are upper-bounded
by D(l+1) and degrees of τ(l+1) and γ(l+1) are
upper-bounded by l − D(l)

Implementing Reed-Solomon – p. 15

B-M (Details)

But what about when ∆(l) 6= 0 and D(l) = l+1
2 ?

Either rule works, but to do even better, define one last
value, a binary value B(l), for each iteration

When B(l) = 0 use rule (A)

When B(l) = 1 use rule (B)

With rule (A) set B(l+1) = B(l)

With rule (B) set B(l+1) = 1 − B(l)

This keeps the degree inequalities satisfied:

degree ω(l)(z) ≤ D(l) − B(l)

degree γ(l)(z) ≤ l − D(l) − (1 − B(l))

Implementing Reed-Solomon – p. 16

B-M (Details)

All those rules ensure the degrees of σ and ω do not
grow too large. Each step they satisfy:

degree σ(l) ≤ (l + 1)/2

degree ω(l) ≤ l/2

Last piece: the initial conditions:

σ(0)(z) = 1

ω(0)(z) = 1

τ(0)(z) = 1

γ(0)(z) = 0

D(0) = 0

B(0) = 0
Implementing Reed-Solomon – p. 17

Decoding: Next Steps

Now we have the Error Locator Polynomial σ(z) and the
Error Evaluator Polynomial ω(z)

Chien’s Search takes σ(z) and outputs the error
locations/positions (Xi and ji)

Forney’s Formula takes ω(z) and the array Xi of error
locations outputs the error magnitudes (Yi)

Implementing Reed-Solomon – p. 18

Chien’s Procedure

Recall the definition of σ(z):

σ(z) =
s∏

i=1

(1 − Xiz)

Now that we have σ(z), finding the array of Xi values is
simply a matter of solving for the roots

The Easy Way: since we’re working over a small field,
just test every value
1. Let α be a generator
2. Initialize {Xi} to the empty set
3. For l = 1, 2, . . .

If σ(αl) = 0: add α−l to {Xi}

Implementing Reed-Solomon – p. 19

Chien’s Procedure

But we can do better than evaluating it 255 times!

If we have computed the αlth evaluation, we get:

σ(αl) = 1 + σ1α
l + σ2α

2l + σ3α
3l + · · · + σsα

sl

Then, computing σ(αl+1) is an O(s) operation:

σ(αl+1) = 1 + σ1α
l+1 + σ2α

2l+2 + σ3α
3l+3 + · · · + σsα

sl+s

The ith term in σ(αl+1) can be computed from the ith
term in σ(αl) by multiplying that term by αi

Implementing Reed-Solomon – p. 20

Forney’s Formula

Using the Error Evaluator Polynomial ω(z) and the error
locations {Xi}, the error magnitudes {Yi} can be computed

ω(z) = σ(z) +
s∑

i=1

zXiYi

s∏

j=1
j 6=i

(1 − Xjz)

Evaluate at X−1
l

ω(X−1
l

) = σ(X−1
l

) +
s∑

i=1

X−1
l

XiYi

s∏

j=1
j 6=i

(1 − XjX
−1
l

)

Implementing Reed-Solomon – p. 21

Forney’s Formula

ω(X−1
l) = σ(X−1

l) +

s∑

i=1

X−1
l XiYi

s∏

j=1
j 6=i

(1 − XjX
−1
l)

Then simplifies to:

= Yl

s∏

j=1
j 6=l

(1 − XjX
−1
l

)

since σ(X−1
l) = 0

Implementing Reed-Solomon – p. 22

Forney’s Formula

ω(X−1
l) = Yl

s∏

j=1
j 6=l

(1 − XjX
−1
l)

Can then be solved for Yl:

Yl =
ω(X−1

l
)

s∏

j=1
j 6=l

(1 − XjX
−1
l

)

And that can be directly computed. We know all the values
on the right hand side!

Implementing Reed-Solomon – p. 23

Putting it all together

We know:
{Xi} The error locations
{Yi} The error magnitudes

Put them together to build the Error Polynomial E(x)

Then subtract to get the codeword!

C(x) = R(x) − E(x)

Implementing Reed-Solomon – p. 24

Reed-Solomon Implementation

The rest of the presentation is about my implementation

Done in Python with no external libraries or
dependencies

Implemented a Finite Field class for GF (28)

Implemented a Polynomial Class for manipulating
polynomials

Implemented the RS algorithms as described

Implementing Reed-Solomon – p. 25

Finite Fields

Created a Python class that subclasses int

Instances are integers, which represent the
corresponding finite field element when translated to a
polynomial

51 = 00110011 = x5 + x4 + x + 1

Overwrote addition, subtraction, multiplication, division,
and exponentiation for finite field arithmetic

Multiplication defined using an exponentiation table and
a logarithm table, pre-generated

Implementing Reed-Solomon – p. 26

Finite Fields (multiplication)

exptable = (1, 3, 5, 15, 17, 51, ... 246, 1)

This table holds all powers of 3

exptable[1] = 3

exptable[255] = 1

logtable = (None, 0, 25, 1, 50, 2, ... 112, 7)

This table holds all logarithms in base 3

logtable[3] = 1

logtable[17] = 4
(since 34 = 17)

logtable[0]
is an error

Implementing Reed-Solomon – p. 27

Finite Fields (multiplication)

exptable = (1, 3, 5, 15, 17, 51, ... 246, 1)
logtable = (None, 0, 25, 1, 50, 2, ... 112, 7)

These tables together define multiplication like this:

def multiply(a, b):
x = logtable[a]
y = logtable[b]
z = (x + y) % 255
return exptable[z]

Implementing Reed-Solomon – p. 28

Finite Fields (more)

exptable = (1, 3, 5, 15, 17, 51, ... 246, 1)
logtable = (None, 0, 25, 1, 50, 2, ... 112, 7)

Exponentiation and multiplicative inverses also use
these tables:

def power(a, b):
x = logtable[a]
z = (x * b) % 255
return exptable[z]

def inverse(a):
e = logtable[a]
return exptable[255 - e]

Implementing Reed-Solomon – p. 29

Polynomial Class

Stores numbers from high degree to low degree

All coefficient math is done using regular Python
operators

Compatible with both integers and field elements as
coefficients

Supports long division and remainders (essential for RS
coding)

Implementing Reed-Solomon – p. 30

Reed Solomon Encoding

Since the polynomial class abstracts polynomial math away,
encoding boils down to basically:
def encode(m):

mprime = m * xshift
b = mprime % g
c = mprime - b
return c

Implementing Reed-Solomon – p. 31

Reed Solomon Decoding

Decoding is also fairly simple:
def decode(r):

sz = syndromes(r)
sigma, omega = berlekamp_massey(sz)
X, j = chien_search(sigma)
Y = forney(omega, X)

There is a loop to build E here
...

return r - E

Implementing Reed-Solomon – p. 32

Reed Solomon Decoding

My implementation of those functions are straight up
implementations of the math. Nothing surprising.

def syndromes(r):
s = [GF256int(0)]
for l in range(1, n-k+1):

s.append(r.evaluate(GF256int(3)**l))

My Chien Search isn’t actually Chien’s search though, it
just evaluates the polynomial 255 times:

p = GF256int(3)
for l in range(1,256):

if sigma.evaluate(p**l) == 0:
X.append(p**(-l))
j.append(255 - l)

Implementing Reed-Solomon – p. 33

Implementation Notes

Message to Polynomial translations
1. “hello”
2. 104, 101, 108, 108, 111
3. 104x4 + 101x3 + 108x2 + 108x1 + 111

Messages are effectively left-padded with null bytes

Implementing Reed-Solomon – p. 34

Example

RS(20,13) code: 13 message bytes and 7 parity bytes.
Can correct 3 errors.

Message: “Hello, world!”

Codeword: “Hello, world![8d][13][f4][f9][43][10][e5]”

R: “[00][00][00]lo, world![8d][13][f4][f9][43][10][e5]”

Decoded: “Hello, world!”

And, to prove this isn’t faked...

Implementing Reed-Solomon – p. 35

Demo!

As an example, I have written a program that encodes
codewords as rows in an image

Uses RS(255,223)

Encodes each symbol as a pixel in a grayscale image

Each row is a codeword

Decodes to:

ALICE’S ADVENTURES IN WONDERLAND
Alice was beginning to get very tired of
sitting by her sister on the ...

Implementing Reed-Solomon – p. 36

Demo!

Since each row is a RS(255,223) codeword, it can
handle up to 16 pixel errors per row.

Drawing 5 px stripes, each of the following still decodes:

Implementing Reed-Solomon – p. 37

	Recall
	Recall
	Decoding Procedure Overview
	Decoding (Defining Terms)
	Decoding (Syndromes)
	Decoding (Syndromes)
	Berlekamp-Massey Algorithm
	B-M (The Key Equation)
	B-M (procedure)
	B-M (procedure)
	B-M (procedure)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	B-M (Details)
	Decoding: Next Steps
	Chien's Procedure
	Chien's Procedure
	Forney's Formula
	Forney's Formula
	Forney's Formula
	Putting it all together
	Reed-Solomon Implementation
	Finite Fields
	Finite Fields (multiplication)
	Finite Fields (multiplication)
	Finite Fields (more)
	Polynomial Class
	Reed Solomon Encoding
	Reed Solomon Decoding
	Reed Solomon Decoding
	Implementation Notes
	Example
	Demo!
	Demo!

