Implementing Reed-Solomon

Andrew Brown

Recall

- Reed-Solmon represents messages as polynomials and over-samples them for redundancy.
- An $(n, k, n-k+1)$ code has
- k digit messages
- n digit codewords
- $n-k+1$ distance between codewords (at least)
- $(n-k) / 2$ errors before it cannot be decoded
- $2 s=n-k$
- In this presentation, all messages and codewords are over the finite field $G F\left(2^{8}\right)$. This makes byte-oriented implementation easy

Recall

- Generator Polynomial:
- $g(x)=(x-\alpha)\left(x-\alpha^{2}\right) \cdots\left(x-\alpha^{n-k}\right)$
- α is a generator element in $G F\left(2^{8}\right)$
- Encoding Process:
- m is the message encoded as a polynomial
- $m^{\prime}=m x^{2 s}$
- $b=m^{\prime}(\bmod g)$
- $m^{\prime}=q g+b$ for some q
- $c=m^{\prime}-b$
- Codewords are multiples of g, and are systematic
- Verifying a codeword is valid is a matter of checking for divisibility by g

Decoding Procedure Overview

1. Calculate Syndromes
2. Berlekamp-Massey Algorithm - calculates the Error Locator Polynomials and Error Evaluator Polynomials
3. Chien Search - Finds the error locations using the Error Locator Polynomial
4. Forney's Formula - Finds the error magnitudes using the error evaluator polynomial
5. Correct the Errors

Decoding (Defining Terms)

- Error Polynomial

$$
\begin{aligned}
& R(x)=C(x)+E(x) \\
& E(x)=E_{0}+E_{1} x+\cdots+E_{n-1} x^{n-1}
\end{aligned}
$$

- Has at most s coefficients that are non-zero
- Error Positions
- $j_{1}, j_{2}, \cdots j_{s}$, each a value between 0 and $n-1$
- Error Locations

$$
X_{i}=\alpha^{j_{i}}
$$

- Error Magnitudes

$$
Y_{i}=E_{j_{i}}
$$

- Notice that there are $2 s$ unknowns

Decoding (Syndromes)

- Step 1: Calculate the first $2 s$ syndromes
- Syndromes are defined for all l :

$$
s_{l}=\sum_{i=1}^{s} Y_{i} X_{i}^{l}
$$

- For the first $2 s$, it reduces to:

$$
s_{l}=E\left(\alpha^{l}\right)=\sum_{i=1}^{s} Y_{i} \alpha^{l j_{i}} \quad 1 \leq l \leq 2 s
$$

- $s_{l}=R\left(\alpha^{l}\right)=E\left(\alpha^{l}\right)$ for the first $2 s$ powers of α.
- Equivalent to having $2 s$ equations with $2 s$ unknowns

Decoding (Syndromes)

- Encode the syndromes in a generator polynomial:

$$
s(z)=\sum_{i=1}^{\infty} s_{i} z^{i}
$$

- This can be computed by finding each s_{i} from the received codeword for the first $2 s$ values. That's all we need though.

Berlekamp-Massey Algorithm

- Input: Syndrome polynomial from the last slide
- Output: Error Locator Polynomial $\sigma(z)$ and Error Evaluator Polynomial $\omega(z)$. Defined as:

$$
\begin{aligned}
& \sigma(z)=\prod_{i=1}^{s}\left(1-X_{i} z\right) \\
& \omega(z)=\sigma(z)+\sum_{i=1}^{s} z X_{i} Y_{i} \prod_{\substack{j=1 \\
j \neq i}}^{s}\left(1-X_{j} z\right)
\end{aligned}
$$

- Notice that the error locations are the inverse roots of $\sigma(z)$. (Roots are $1 / X_{1}, 1 / X_{2}, \cdots 1 / X_{s}$)

B-M (The Key Equation)

- Observe the following relation:

$$
\begin{aligned}
\frac{\omega(z)}{\sigma(z)} & =1+\sum_{i=1}^{s} \frac{z X_{i} Y_{i}}{1-X_{i} z} \\
& =\ldots \text { intermediate steps omitted } \\
& =1+s(z)
\end{aligned}
$$

- Key equation thus states:

$$
(1+s(z)) \sigma(z) \stackrel{\left(\bmod z^{2 s+1}\right)}{=} \omega(z)
$$

- $\sigma(z)$ and $\omega(z)$ have degree at most s
- Key Equation represents a set of $2 s$ equations and $2 s$ unknowns

B-M (procedure)

- B-M iterates $2 s$ times
- At each iteration, it produces a pair of polynomials:

$$
\left(\sigma_{(l)}(z), \omega_{(l)}(z)\right)
$$

- where the polynomials satisfy that iteration's key equation:

$$
\left.(1+s(z)) \sigma_{(l)}(z) \quad \stackrel{(\bmod }{=} z^{l+1}\right) \omega_{(l)}(z)
$$

B-M (procedure)

- Once we have

$$
\left(\sigma_{(l)}(z), \omega_{(l)}(z)\right)
$$

for some l. If we're lucky, they already satisfy the next key equation:

$$
(1+s(z)) \sigma_{(l)}(z) \stackrel{\left(\bmod z^{(l+2)}\right)}{=} \omega_{(l)}(z)
$$

in which case we can set $\sigma_{(l+1)}(z)=\sigma_{(l)}(z)$ and similarly for $\omega(z)$

- However, usually we have an unwanted higher-order term:

$$
\left.(1+s(z)) \sigma_{(l)}(z) \stackrel{(\bmod }{=} z^{l+2}\right) \omega_{(l)}(z)+\Delta_{(l)} z^{l+1}
$$

B-M (procedure)

- $\Delta_{(l)}$ is the non-zero coefficient of z^{l+1} in $(1+s(z)) \sigma_{(l)}(z)$
- Basic idea is to iteratively improve estimates of σ and ω
- But since there may be a higher order term, we can't always just extend to $l+1$ from iteration l
- A complex set of rules determines how to handle different cases
- The next 5 slides describe these cases and how to handle them

B-M (Details)

- $\Delta_{(l)}$ is the non-zero coefficient in $(1+s(z)) \sigma_{(l)}(z)$
- To find the next iteration's polynomials, we introduce two more polynomials $\tau_{(l)}(z)$ and $\gamma_{(l)}(z)$
- They must satisfy:

$$
(1+s(z)) \tau_{(l)}(z) \quad\left(\bmod z^{l+1}\right) \gamma_{(l)}(z)+z^{l}
$$

- And we have the following rules to derive the next σ and ω :

$$
\begin{aligned}
\sigma_{(l+1)}(z) & =\sigma_{(l)}(z)-\Delta_{(l)} z \tau_{(l)}(z) \\
\omega_{(l+1)}(z) & =\omega_{(l)}(z)-\Delta_{(l)} z \gamma_{(l)}(z)
\end{aligned}
$$

B-M (Details)

- But how to compute $\tau_{(l+1)}(z)$ and $\gamma_{(l+)}(z)$?
- Use one of the following rules:
(A)

$$
\begin{aligned}
\tau_{(l+1)}(z) & = & z \tau_{(l)}(z) \\
\gamma_{(l+1)}(z) & = & z \gamma_{(l)}(z) \\
\tau_{(l+1)}(z) & = & \frac{\sigma_{(l)}(z)}{\Delta_{(l)}} \\
\gamma_{(l+1)}(z) & = & \frac{\omega_{(l)}(z)}{\Delta_{(l)}}
\end{aligned}
$$

B-M (Details)

- One of (A) or (B) is chosen each iteration to minimize the degrees of $\tau_{(l+1)}(z)$ and $\gamma_{(l+1)}(z)$
- To choose, define a single value $D_{(l)}$ for each iteration
- Choose rule (A) if $\Delta_{(l)}=0$ or $D_{(l)}>\frac{l+1}{2}$
- Choose rule (B) if $\Delta_{(l)} \neq 0$ and $D_{(l)}<\frac{l+1}{2}$
- With rule (A) set $D_{(l+1)}=D_{(l)}$
- With rule (B) set $D_{(l+1)}=l+1-D_{(l)}$
- These rules and conditions ensure $0<D_{(l+1)} \leq l+1$ and the degrees of $\sigma_{(l+1)}$ and $\omega_{(l+1)}$ are upper-bounded by $D_{(l+1)}$ and degrees of $\tau_{(l+1)}$ and $\gamma_{(l+1)}$ are upper-bounded by $l-D_{(l)}$

B-M (Details)

- But what about when $\Delta_{(l)} \neq 0$ and $D_{(l)}=\frac{l+1}{2}$?
- Either rule works, but to do even better, define one last value, a binary value $B_{(l)}$, for each iteration
- When $B_{(l)}=0$ use rule (A)
- When $B_{(l)}=1$ use rule (B)
- With rule (A) set $B_{(l+1)}=B_{(l)}$
- With rule (B) set $B_{(l+1)}=1-B_{(l)}$
- This keeps the degree inequalities satisfied:

$$
\begin{aligned}
\operatorname{degree} \omega_{(l)}(z) & \leq D_{(l)}-B_{(l)} \\
\operatorname{degree} \gamma_{(l)}(z) & \leq l-D_{(l)}-\left(1-B_{(l)}\right)
\end{aligned}
$$

B-M (Details)

- All those rules ensure the degrees of σ and ω do not grow too large. Each step they satisfy:

$$
\begin{aligned}
\operatorname{degree} \sigma_{(l)} & \leq(l+1) / 2 \\
\operatorname{degree} \omega_{(l)} & \leq l / 2
\end{aligned}
$$

- Last piece: the initial conditions:

$$
\begin{aligned}
\sigma_{(0)}(z) & =1 \\
\omega_{(0)}(z) & =1 \\
\tau_{(0)}(z) & =1 \\
\gamma_{(0)}(z) & =0 \\
D_{(0)} & =0 \\
B_{(0)} & =0
\end{aligned}
$$

Decoding: Next Steps

- Now we have the Error Locator Polynomial $\sigma(z)$ and the Error Evaluator Polynomial $\omega(z)$
- Chien's Search takes $\sigma(z)$ and outputs the error locations/positions (X_{i} and j_{i})
- Forney's Formula takes $\omega(z)$ and the array X_{i} of error locations outputs the error magnitudes $\left(Y_{i}\right)$

Chien's Procedure

- Recall the definition of $\sigma(z)$:

$$
\sigma(z)=\prod_{i=1}^{s}\left(1-X_{i} z\right)
$$

- Now that we have $\sigma(z)$, finding the array of X_{i} values is simply a matter of solving for the roots
- The Easy Way: since we're working over a small field, just test every value

1. Let α be a generator
2. Initialize $\left\{X_{i}\right\}$ to the empty set
3. For $l=1,2, \ldots$

If $\sigma\left(\alpha^{l}\right)=0$: add α^{-l} to $\left\{X_{i}\right\}$

Chien's Procedure

- But we can do better than evaluating it 255 times!
- If we have computed the α^{l} th evaluation, we get:

$$
\sigma\left(\alpha^{l}\right)=1+\sigma_{1} \alpha^{l}+\sigma_{2} \alpha^{2 l}+\sigma_{3} \alpha^{3 l}+\cdots+\sigma_{s} \alpha^{s l}
$$

- Then, computing $\sigma\left(\alpha^{l+1}\right)$ is an $O(s)$ operation:

$$
\sigma\left(\alpha^{l+1}\right)=1+\sigma_{1} \alpha^{l+1}+\sigma_{2} \alpha^{2 l+2}+\sigma_{3} \alpha^{3 l+3}+\cdots+\sigma_{s} \alpha^{s l+s}
$$

- The i th term in $\sigma\left(\alpha^{l+1}\right)$ can be computed from the i th term in $\sigma\left(\alpha^{l}\right)$ by multiplying that term by α^{i}

Forney's Formula

Using the Error Evaluator Polynomial $\omega(z)$ and the error locations $\left\{X_{i}\right\}$, the error magnitudes $\left\{Y_{i}\right\}$ can be computed

$$
\omega(z)=\sigma(z)+\sum_{i=1}^{s} z X_{i} Y_{i} \prod_{\substack{j=1 \\ j \neq i}}^{s}\left(1-X_{j} z\right)
$$

Evaluate at X_{l}^{-1}

$$
\omega\left(X_{l}^{-1}\right)=\sigma\left(X_{l}^{-1}\right)+\sum_{i=1}^{s} X_{l}^{-1} X_{i} Y_{i} \prod_{\substack{j=1 \\ j \neq i}}^{s}\left(1-X_{j} X_{l}^{-1}\right)
$$

Forney's Formula

$$
\omega\left(X_{l}^{-1}\right)=\sigma\left(X_{l}^{-1}\right)+\sum_{i=1}^{s} X_{l}^{-1} X_{i} Y_{i} \prod_{\substack{j=1 \\ j \neq i}}^{s}\left(1-X_{j} X_{l}^{-1}\right)
$$

Then simplifies to:

$$
=Y_{l} \prod_{\substack{j=1 \\ j \neq l}}^{s}\left(1-X_{j} X_{l}^{-1}\right)
$$

since $\sigma\left(X_{l}^{-1}\right)=0$

Forney's Formula

$$
\omega\left(X_{l}^{-1}\right)=Y_{l} \prod_{\substack{j=1 \\ j \neq l}}^{s}\left(1-X_{j} X_{l}^{-1}\right)
$$

Can then be solved for Y_{l} :

$$
Y_{l}=\frac{\omega\left(X_{l}^{-1}\right)}{\prod_{\substack{j=1 \\ j \neq l}}^{s}\left(1-X_{j} X_{l}^{-1}\right)}
$$

And that can be directly computed. We know all the values on the right hand side!

Putting it all together

- We know:
- $\left\{X_{i}\right\}$ The error locations
- $\left\{Y_{i}\right\}$ The error magnitudes
- Put them together to build the Error Polynomial $E(x)$
- Then subtract to get the codeword!

$$
C(x)=R(x)-E(x)
$$

Reed-Solomon Implementation

The rest of the presentation is about my implementation

- Done in Python with no external libraries or dependencies
- Implemented a Finite Field class for $G F\left(2^{8}\right)$
- Implemented a Polynomial Class for manipulating polynomials
- Implemented the RS algorithms as described

Finite Fields

- Created a Python class that subclasses int
- Instances are integers, which represent the corresponding finite field element when translated to a polynomial

$$
51=00110011=x^{5}+x^{4}+x+1
$$

- Overwrote addition, subtraction, multiplication, division, and exponentiation for finite field arithmetic
- Multiplication defined using an exponentiation table and a logarithm table, pre-generated

Finite Fields (multiplication)

exptable $=(1,3,5,15,17,51, \ldots 246,1)$

- This table holds all powers of 3
- exptable[1] = 3
- exptable[255] = 1
logtable $=($ None, $0,25,1,50,2, \ldots 112,7)$
- This table holds all logarithms in base 3
- logtable[3] = 1
- logtable[17] = 4 $\left(\right.$ since $\left.3^{4}=17\right)$
- logtable[0] is an error

Finite Fields (multiplication)

```
exptable = (1, 3, 5, 15, 17, 51, ... 246, 1)
logtable = (None, 0, 25, 1, 50, 2, ... 112, 7)
```

- These tables together define multiplication like this:

$$
\begin{aligned}
& \text { def } \text { multiply }(\mathrm{a}, \mathrm{~b}): \\
& \mathrm{x}=\text { logtable[a] } \\
& \mathrm{y}=\text { logtable [b] } \\
& \mathrm{z}=(\mathrm{x}+\mathrm{y}) \% 255 \\
& \text { return exptable[z] }
\end{aligned}
$$

Finite Fields (more)

exptable $=(1,3,5,15,17,51, \ldots 246,1)$
logtable $=($ None, $0,25,1,50,2, \ldots 112,7)$

- Exponentiation and multiplicative inverses also use these tables:
def power (a, b):
$\mathrm{x}=$ logtable[a]
$z=(x * b) \% 255$
return exptable[z]
def inverse(a):
e = logtable[a]
return exptable[255 - e]

Polynomial Class

- Stores numbers from high degree to low degree
- All coefficient math is done using regular Python operators
- Compatible with both integers and field elements as coefficients
- Supports long division and remainders (essential for RS coding)

Reed Solomon Encoding

Since the polynomial class abstracts polynomial math away, encoding boils down to basically:

```
def encode(m) :
    mprime = m * xshift
    b = mprime % g
    c = mprime - b
    return c
```


Reed Solomon Decoding

Decoding is also fairly simple: def decode(r):
sz = syndromes(r)
sigma, omega = berlekamp_massey(sz)
X, j = chien_search (sigma)
Y = forney (omega, X)
\# There is a loop to build E here
return $r-E$

Reed Solomon Decoding

- My implementation of those functions are straight up implementations of the math. Nothing surprising.

```
def syndromes(r):
    s = [GF256int(0)]
    for l in range(1, n-k+1):
    s.append(r.evaluate(GF256int(3)**l))
```

- My Chien Search isn't actually Chien's search though, it just evaluates the polynomial 255 times:

```
p = GF256int(3)
for l in range(1,256):
    if sigma.evaluate( p**l ) == 0:
        X.append( p**(-l) )
    j.append(255 - l)
```


Implementation Notes

- Message to Polynomial translations

1. "hello"
2. $104,101,108,108,111$
3. $104 x^{4}+101 x^{3}+108 x^{2}+108 x^{1}+111$

- Messages are effectively left-padded with null bytes

Example

- $\mathrm{RS}(20,13)$ code: 13 message bytes and 7 parity bytes. Can correct 3 errors.
- Message: "Hello, world!"
- Codeword: "Hello, world![8d][13][f4][f9][43][10][e5]"
- R: "[00][00][00]lo, world![8d][13][f4][f9][43][10][e5]"
- Decoded: "Hello, world!"

And, to prove this isn't faked...

Demo!

As an example, I have written a program that encodes codewords as rows in an image

- Uses RS $(255,223)$
- Encodes each symbol as a pixel in a grayscale image
- Each row is a codeword

- Decodes to:

ALICE'S ADVENTURES IN WONDERLAND
Alice was beginning to get very tired of sitting by her sister on the ...

Demo!

- Since each row is a RS $(255,223)$ codeword, it can handle up to 16 pixel errors per row.
- Drawing 5 px stripes, each of the following still decodes:

