
1

296.3 Page1

296.3:Algorithms in the Real World

Error Correcting Codes III (expander based codes)

– Expander graphs

– Low density parity check (LDPC) codes

– Tornado codes

Thanks to Shuchi Chawla for many of the slides

296.3 Page2

Why Expander Based Codes?

Linear codes like RS & random linear codes

The other two give nearly optimal rates

But they are slow :

Assuming an (n, (1-p)n, (1-ε)pn+1)2 tornado code

O(n)O(n2) or betterLDPC

O(n log 1/ε)O(n log 1/ε)Tornado

O(n2)O(n log n)RS

O(n3)O(n2)Random Linear

DecodingEncodingCode

296.3 Page3

Error Correcting Codes Outline

Introduction

Linear codes

Read Solomon Codes

Expander Based Codes

– Expander Graphs

– Low Density Parity Check (LDPC) codes

– Tornado Codes

296.3 Page4

Expander Graphs (non-bipartite)

Properties

– Expansion: every small subset (k ≤ αn) has many
(≥ βk) neighbors

– Low degree – not technically part of the
definition, but typically assumed

k ≤ α n ≥ β k

G

2

296.3 Page5

Expander Graphs (bipartite)

Properties

– Expansion: every small subset (k ≤ αn) on left
has many (≥ βk) neighbors on right

– Low degree – not technically part of the
definition, but typically assumed

k bits
(k ≤ αn) βk bits

296.3 Page6

Expander Graphs

Useful properties:

– Every set of vertices has many neighbors

– Every balanced cut has many edges crossing it

– A random walk will quickly converge to the
stationary distribution (rapid mixing)

– The graph has “high dimension”

– Expansion is related to the eigenvalues of the
adjacency matrix

296.3 Page7

Expander Graphs: Applications

Pseudo-randomness: implement randomized
algorithms with few random bits

Cryptography: strong one-way functions from weak
ones.

Hashing: efficient n-wise independent hash
functions

Random walks: quickly spreading probability as you
walk through a graph

Error Correcting Codes: several constructions

Communication networks: fault tolerance, gossip-
based protocols, peer-to-peer networks

296.3 Page8

d-regular graphs

An undirected graph is d-regular if every vertex has
d neighbors.

A bipartite graph is d-regular if every vertex on the
left has d neighbors on the right.

The constructions we will be looking at are all d-
regular.

3

296.3 Page9

Expander Graphs: Eigenvalues

Consider the normalized adjacency matrix Aij for an
undirected graph G (all rows sum to 1)

The (xi,λi) satisfying
A xi = λi xi

are the eigenvectors and eigenvalues of A.

Consider the eigenvalues λ0 ≥ λ1 ≥ λ2 ≥ …
For a d-regular graph, λ0 = 1. Why?
The separation of the eigenvalues tell you a lot about

the graph (we will revisit this several times).
If λ1 is much smaller than λ0 then the graph is an

expander.
Expansion β ≥ (1/λ1)2

296.3 Page10

Expander Graphs: Constructions

Important parameters:size (n), degree (d), expansion (β)

Randomized constructions
– A random d-regular graph is an expander with a high

probability

– Construct by choosing d random perfect matchings

– Time consuming and cannot be stored compactly

Explicit constructions
– Cayley graphs, Ramanujan graphs etc

– Typical technique – start with a small expander, apply
operations to increase its size

296.3 Page11

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Squaring

– G2 contains edge (u,w) if G contains edges (u,v)
and (v,w) for some node v

– A’ = A2 – 1/d I

– λ’ = λ2 – 1/d

– d’ = d2 - d
Size ≡
Degree ↑
Expansion ↑

296.3 Page12

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Tensor Product (Kronecker product)

– G = AxB nodes are (a,b) ∀ a∈A and b ∈ B

– edge between (a,b) and (a’,b’) if A contains (a,a’)
and B contains (b,b’)

– n’ = nAnB

– λ’ = max (λA, λB)

– d’ = dAdB

Size ↑
Degree ↑
Expansion ↓

4

296.3 Page13

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product

– “Multiply” a big graph with a small graph

n2 = d1

d2 = (d1)1/4

296.3 Page14

Expander Graphs: Constructions

Start with a small expander, and apply operations to make it
bigger while preserving expansion

Zig-Zag product

– “Multiply” a big expander with a small expander

Size ↑
Degree ↓
Expansion ↓ (slightly)

296.3 Page15

Combination: square and zig-zag

For a graph with size n, degree d, and eigenvalue λ,
define G = (n, d, λ). We would like to increase n while
holding d and λ the same.

Squaring and zig-zag have the following effects:

(n, d, λ)2 = (n, d2, λ2) ≡ ↑↑

(n1, d1, λ1) zz (d1, d2, λ2) = (n1d1, d2
2, λ1+ λ2+ λ2

2) ↑↓↓

Now given a graph H = (d4, d, 1/5) and G1 = (d4, d2, 2/5)

– Gi = (Gi-1
2) zz H (square, zig-zag)

Giving: Gi = (ni, d2, 2/5) where ni = d4i (as desired)

296.3 Page16

Error Correcting Codes Outline

Introduction

Linear codes

Read Solomon Codes

Expander Based Codes

– Expander Graphs

– Low Density Parity Check (LDPC) codes

– Tornado Codes

5

296.3 Page17

Low Density Parity Check (LDPC) Codes

n
n-k

=

010101000

000100101

101001000

000010110

011000010

100010001

H

H

n

n-k

Each row is a vertex on the right and each column is
a vertex on the left.

A codeword on the left is valid if each right “parity
check” vertex has parity 0.

The graph has O(n) edges (low density)

code
bits

parity
check
bits

296.3 Page18

Applications in the “real world”

10Gbase-T (IEEE 802.3an, 2006)

– Standard for 10 Gbits/sec over copper wire

WiMax (IEEE 802.16e, 2006)

– Standard for medium-distance wireless.
Approx 10Mbits/sec over 10 Kilometers.

NASA

– Proposed for all their space data systems

296.3 Page19

History

Invented by Gallager in 1963 (his PhD thesis)

Generalized by Tanner in 1981 (instead of using
parity and binary codes, use other codes for
“check” nodes).

Mostly forgotten by community at large until the mid
90s when revisited by Spielman, MacKay and
others.

296.3 Page20

Distance of LDPC codes

Consider a d-regular LPDC with (α,3d/4) expansion.
Theorem: Distance of code is greater than αn.
Proof. (by contradiction)

Suppose we change a code word in v bits,

v ≤ αn.
Let V be the set of changed bits in codeword

V has > (3/4)dv neighbors on the right

Average # of changed bits per such neighbor
is < 4/3.

To make average work, at least one neighbor

has only 1 changed bit… which would cause

a non-zero syndrome.

d = degree

V

neighbors

6

296.3 Page21

Correcting Errors in LPDC codes

We say a check bit is unsatisfied if parity ≠ 0

Algorithm:
While there are unsatisfied check bits
1. Find a bit on the left for which more than d/2

neighbors are unsatisfied
2. Flip that bit

Converges since every step reduces unsatisfied
nodes by at least 1.

Runs in linear time.
Why must there be a node with more than d/2

unsatisfied neighbors?
296.3 Page22

A node with d/2 unsatisfied neighbors

x

x

x

unshared neighbor
Let r ≤ αn be number of error bits.

If none of the error bits has more
than d/2 unshared check-bit neighbors
(i.e., not shared with any other error
bit), then total number of neighbors is
at most (d/2)r+ ((d/2)r)/2 = 3dr/4.

But the error bits have more than
(3/4)dr neighbors, a contradiction.

Finally, every unshared neighbor must
be unsatisfied.

error bit

296.3 Page23

Coverges to closest codeword

Theorem: If # of error bits is less than αn/4 with
3d/4 expansion then the simple decoding algorithm
will converge to the closest codeword.

Proof: let:

ui = # of unsatisfied check bits
on step i

ri = # corrupt code bits on step i

si = # satisfied check bits with
corrupt neighbors on step i

We know that ui decrements on each
step, but what about ri?

296.3 Page24

Proof continued:

iii drus ≤+2

ui = unsatisfied
ri = corrupt
si = satisfied with corrupt neighbors

iii drsu
4

3>+ (by expansion)

(by counting edges)

ii udr ≤
2

1
(by substitution)

00 dru ≤ (by counting edges)0uui < (steps decrease u)

Therefore: 02rri < i.e., number of corrupt bits cannot
more than double

If we start with at most αn/4 corrupt bits we will never
get αn/2 corrupt bits but the distance is > αn

7

296.3 Page25

More on decoding LDPC

Simple algorithm is only guaranteed to fix half as
many errors as could be fixed but in practice can
do better.

Fixing (d-1)/2 errors is NP hard

Soft “decoding” as originally specified by Gallager is
based on belief propagation---determine
probability of each code bit being 1 and 0 and
propagate probs. back and forth to check bits.

296.3 Page26

Encoding LPDC

Encoding can be done by generating G from H and
using matrix multiply.

What is the problem with this? (G might be dense)

Various more efficient methods have been studied

296.3 Page27

Error Correcting Codes Outline

Introduction

Linear codes

Read Solomon Codes

Expander Based Codes

– Expander Graphs

– Low Density Parity Check (LDPC) codes

– Tornado Codes

296.3 Page28

The loss model

Random Erasure Model:
– Each bit is lost independently with some

probability µ
– We know the positions of the lost bits

For a rate of (1-p) can correct (1-ε)p fraction of
errors.

Seems to imply a
(n, (1-p)n, (1-ε)pn+1)2

code, but not quite because of random errors
assumption.

We will assume p = .5.
Error Correction can be done with some more effort

8

296.3 Page29

Message
bits Check

bits

c6 = m3 ⊕ m7

Similar to LDPC codes but check bits are not
required to equal zero (i.e., the graph does not
represent H).

296.3 Page30

Tornado codes

Will use d-regular bipartite graphs with n nodes on
the left and pn on the right (notes assume p = .5)

Will need β > d/2 expansion.

m1

m2

m3

mk

c1

cpk

degree = 2ddegree = d

k = # of message bits
(notes use n)

296.3 Page31

Tornado codes: Encoding

Why is it linear time?

Computes the sum modulo
2 of its neighborsm1

m2

m3

mk

c1

cpk

296.3 Page32

Tornado codes: Decoding

Assume that all the check bits are intact

Find a check bit such that only one of its neighbors
is erased (an unshared neighbor)

Fix the erased code, and repeat.

m1

m2

m1+m2+c1 = m3

mk

c1

cpk

9

296.3 Page33

Tornado codes: Decoding

Need to ensure that we can always find such a check bit

“Unshared neighbors” property

Consider the set of corrupted message bits and their
neighbors. Suppose this set is small.

=> at least one corrupted message bit has an unshared
neighbor.

m1

m2

mk

c1

cpk

unshared
neighbor

296.3 Page34

Tornado codes: Decoding

Can we always find unshared neighbors?

Expander graphs give us this property if β > d/2

(similar to argument previous argument that β >
3d/4 implies d/2 unshared neighbors)

Also, [Luby et al] show that if we construct the
graph from a specific kind of non-regular degree
sequence (derived from differential equations!),
then we can always find unshared neighbors.

296.3 Page35

What if check bits are lost?
Cascading

– Use another bipartite graph to construct another level of
check bits for the check bits

– Final level is encoded using RS or some other code

k pk
p2k

pik ≤ √k,
decoding time
O(k) for RS

total bits n ≤ k(1 +p + p2 + …)
= k/(1-p)

rate = k/n = (1-p)
296.3 Page36

Cascading
Encoding time

– for the first i stages : |E| = d x |V| = O(k)
– for encoding the last stage w/ RS: O((√k) log √k) = O(k)

Decoding time
– start from the last stage and move left
– again proportional to |E|
– also proportional to d, which must be at least 1/ε to make

the decoding work
Why not cascade down to one node or just a few nodes?

Probability that those nodes fail is too high.
Why stop at kpi= √k ? (1) At that point can decode in

O((√k)2)=O(k) time using RS. (2) For random erasures and
small enough µ, with high probability at most an α fraction of
bits at any level are missing

Can fix kp(1-ε) random erasures

