
Compsci 06/101, Spring 2012 17.1

What is Computing? Informatics?
  What is computer science, what is its potential?

  What can we do with computers in our lives?
  What can we do with computing for society?
  Will networks transform thinking/knowing/doing?
  Society affecting and affected by computing?
  Changes in science: biology, physics, chemistry, …
  Changes in humanity: access, revolution (?), …

  Privileges and opportunities available if you know code
  Writing and reading code, understanding algorithms
  Majestic, magical, mathematical, mysterious, …

Compsci 06/101, Spring 2012 17.2

What can be programmed?
  What class of problems can be solved?

  Hadoop, Intel i7, Mac, Windows8, Android,…
  Alan Turing contributions

• Halting problem, Church-Turing thesis

  What class of problems can be solved efficiently?
  Problems with no practical solution

• What does practical mean?

  We can't find a practical solution
• Solving one solves them all
• Would you rather be rich or famous?

Compsci 06/101, Spring 2012 17.3

Schedule students, minimize conflicts

  Given student requests,
available teachers
  write a program that

schedules classes
  Minimize conflicts

  Add a GUI too
  Web interface
  …
  …

I can’t write
this program
because I’m too
dumb

Compsci 06/101, Spring 2012 17.4

One better scenario
I can’t write this
program because
it’s provably
impossible

I can’t write this
program but neither
can all these famous
people

Still another scenario, is this better?

Compsci 06/101, Spring 2012 17.5

Summary of Problem Categories
  Some problems can be solved 'efficiently'

  Run large versions fast on modern computers
  What is 'efficient'? It depends

  Some problems cannot be solved by computer.
  Provable! We can't wait for smarter algorithms

  Some problems have no efficient solution
  Provably exponential 2n so for "small" n …

  Some have no known efficient solution, but …
  If one does they all do!

Compsci 06/101, Spring 2012 17.6

Entscheidungsproblem
  What can we program?

  What kind of computer?

  What can't we program?
  Can't we try harder?

  Can we write a program that will determine if any program

P will halt when run on input S?
  Input to halt: P and S
  Output: yes/no halts

Compsci 06/101, Spring 2012 17.7

Good sites: http://del.icio.us/
  What is social bookmarking?

  Why is del.icio.us interesting?
  Who posts, who visits?

  What about a website of interesting websites?
  What would you expect to find there?
  Would the site list itself?

  What about sites that list/link to themselves?
  What about a site with all sites that list

themselves?

Compsci 06/101, Spring 2012 17.8

Bad sites: http://haz.ardo.us
  Sites listing bad sites (don’t visit them?)

  Where would this be useful?
  What about censorship (internationally?)
  Is this a good site or a bad site?

  What about sites that list/link themselves?
  Is haz.ardo.us there?

  Website of all the sites that don’t list themselves?
  Is notlisted.com listed on notlisted.com?

Compsci 06/101, Spring 2012 17.9

halting module/problem: writing doesHalt

"""
 function doesHalt returns True if progname
 halts when run on input, and False if progname
 doesn't halt (infinite loop)
"""
 def doesHalt(progname,input):
 #code here

 name = "SpreadingNews.py"
 data = "input.txt"
 if doesHalt(name,data): print "program ended!"

  We're assuming doesHalt exists – how to use it?
  It works for any program and any data! Not just

one, that's important in this context

Compsci 06/101, Spring 2012 17.10

How to tell if X stops/halts on Y
import halting
def runHalt():
 prog = "SpreadingNews.py";
 input = "["abc", "def", "hij"]"
 if halting.doesHalt(prog,input):
 print prog,"stops"
 else:
 print prog,"loops 4ever"

  Can user enter name of program, X? Input, Y?
  What's the problem with this program?

Compsci 06/101, Spring 2012 17.11

Consider this module Confuse.py

import halting
print "enter name of program",
prog = raw_input()
if halting.doesHalt(prog,prog):
 while True:
 pass
print "finished"

  We want to show writing doesHalt is impossible
  Proof by contradiction:
  Assume possible, show impossible situation results

  Can a program read a program? Itself?

Compsci 06/101, Spring 2012 17.12

Are hard problems easy? Clay Prize
  P = easy problems, NP = “hard” problems

  P means solvable in polynomial time
• Difference between N, N2, N10 ?

  NP means non-deterministic, polynomial time
• guess a solution and verify it efficiently

  Question: P = NP ?
  if yes, a whole class of difficult problems , the
NP-complete problems, can be solved efficiently

  if no, no hard problems can be solved efficiently
  showing the first problem was NP complete was
an exercise in intellectual bootstrapping,
satisfiability/Cook/(1971)

Compsci 06/101, Spring 2012 17.13

How is Python like all other
programming languages, how is it
different?

Compsci 06/101, Spring 2012 17.14

A Rose by any other name…C or Java?
  Why do we use [Python|Java] in courses ?

  [is|is not] Object oriented
  Large collection of libraries
  Safe for advanced programming and beginners
  Harder to shoot ourselves in the foot

  Why don't we use C++ (or C)?
  Standard libraries weak or non-existant

(comparatively)
  Easy to make mistakes when beginning
  No GUIs, complicated compilation model
  What about other languages?

Compsci 06/101, Spring 2012 17.15

Why do we learn other languages?
  Perl, Python, PHP, Ruby, C, C++, Java, Scheme, ML,

  Can we do something different in one language?
•  In theory: no; in practice: yes

  What languages do you know? All of them.
  In what languages are you fluent? None of them

  In later courses why do we use C or C++?
  Closer to the machine, understand abstractions at

many levels
  Some problems are better suited to one language

Compsci 06/101, Spring 2012 17.16

Find all unique/different words in a file

Across different languages: do these
languages have the same power?

Compsci 06/101, Spring 2012 17.17

Unique Words in Python
#! /usr/bin/env python

def main():
 f = open('/data/melville.txt', 'r')
 words = f.read().strip().split()
 allWords = set()
 for w in words:
 allWords.add(w)
 for word in sorted(allWords):
 print word

if __name__ == "__main__":
 main()

Compsci 06/101, Spring 2012 17.18

Unique words in Java
import java.util.*;
import java.io.*;
public class Unique {
 public static void main(String[] args)
 throws IOException{
 Scanner scan =
 new Scanner(new File("/data/melville.txt"));
 TreeSet<String> set = new TreeSet<String>();
 while (scan.hasNext()){
 String str = scan.next();
 set.add(str);
 }
 for(String s : set){
 System.out.println(s);
 }
 }
}

Compsci 06/101, Spring 2012 17.19

Unique words in C++
#include <iostream>
#include <fstream>
#include <set>
using namespace std;

int main(){
 ifstream input("/data/melville.txt");
 set<string> unique;
 string word;
 while (input >> word){
 unique.insert(word);
 }
 set<string>::iterator it = unique.begin();
 for(; it != unique.end(); it++){
 cout << *it << endl;
 }
 return 0;
}

Compsci 06/101, Spring 2012 17.20

Unique words in PHP
<?php

$wholething = file_get_contents("file:///data/melville.txt");
$wholething = trim($wholething);

$array = preg_split("/\s+/",$wholething);
$uni = array_unique($array);
sort($uni);
foreach ($uni as $word){
 echo $word."
";
}

?>

Compsci 06/101, Spring 2012 17.21

Kernighan and Ritchie
  First C book, 1978
  First ‘hello world’
  Ritchie: Unix too!

  Turing award 1983

  Kernighan: tools
  Strunk and White

  Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you are as
clever as you can be when you write it, how will you
ever debug it?

Brian Kernighan

Compsci 06/101, Spring 2012 17.22

How do we read a file in C?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int strcompare(const void * a, const void * b){
 char ** stra = (char **) a;
 char ** strb = (char **) b;
 return strcmp(*stra, *strb);
}

int main(){
 FILE * file = fopen("/data/melville.txt","r");
 char buf[1024];
 char ** words = (char **) malloc(5000*sizeof(char **));
 int count = 0;
 int k;

Compsci 06/101, Spring 2012 17.23

Storing words read when reading in C
 while (fscanf(file,"%s",buf) != EOF){
 int found = 0; // look for word just read
 for(k=0; k < count; k++){
 if (strcmp(buf,words[k]) == 0){
 found = 1;
 break;
 }
 }
 if (!found){ // not found, add to list
 words[count] = (char *) malloc(strlen(buf)+1);
 strcpy(words[count],buf);
 count++;
 }
 }

  Complexity of reading/storing? Allocation of memory?

Compsci 06/101, Spring 2012 17.24

Sorting, Printing, Freeing in C
 qsort(words,count,sizeof(char *), strcompare);
 for(k=0; k < count; k++) {
 printf("%s\n",words[k]);
 }

 for(k=0; k < count; k++){
 free(words[k]);
 }
 free(words);

}
  Sorting, printing, and freeing

  How to sort? Changing sorting mechanism?
  Why do we call free? Where required?

Compsci 06/101, Spring 2012 17.25

def is_this_the_end_of_learning_of():
 [x for x in …]

Compsci 06/101, Spring 2012 17.26

Tim French (Mathemetics)

Four FBF in common

Compsci 06/101, Spring 2012 17.27

Kristin Oakley (English, Visual/Media)

Three FBF in common

Compsci 06/101, Spring 2012 17.28

Graham Oxley (Sociology)

1 FBF in common

Compsci 06/101, Spring 2012 17.29

Dmitri Tran (I8N Comparative Studies)

invisible

Compsci 06/101, Spring 2012 17.30

Jacquelin Bascetta (Physics)

7 FBF in common

Compsci 06/101, Spring 2012 17.31

Chris Kizer (Medieval and Renaissance)

7 FBF in common

Compsci 06/101, Spring 2012 17.32

Ubong Akpaninyie

8 FBF in common

Compsci 06/101, Spring 2012 17.33

Ryan Magee (Physics)

5 FBF in common

Compsci 06/101, Spring 2012 17.34

Robby Helms (Physics)

7 FBF in common

Compsci 06/101, Spring 2012 17.35

Peter Dong (Chemistry)

6 FBF in common

Compsci 06/101, Spring 2012 17.36

Grace Wang (History/Political Science)

invisible

