
Compsci 06/101, Spring 2012 17.1

What is Computing? Informatics?
  What is computer science, what is its potential?

  What can we do with computers in our lives?
  What can we do with computing for society?
  Will networks transform thinking/knowing/doing?
  Society affecting and affected by computing?
  Changes in science: biology, physics, chemistry, …
  Changes in humanity: access, revolution (?), …

  Privileges and opportunities available if you know code
  Writing and reading code, understanding algorithms
  Majestic, magical, mathematical, mysterious, …

Compsci 06/101, Spring 2012 17.2

What can be programmed?
  What class of problems can be solved?

  Hadoop, Intel i7, Mac, Windows8, Android,…
  Alan Turing contributions

• Halting problem, Church-Turing thesis

  What class of problems can be solved efficiently?
  Problems with no practical solution

• What does practical mean?

  We can't find a practical solution
• Solving one solves them all
• Would you rather be rich or famous?

Compsci 06/101, Spring 2012 17.3

Schedule students, minimize conflicts

  Given student requests,
available teachers
  write a program that

schedules classes
  Minimize conflicts

  Add a GUI too
  Web interface
  …
  …

I can’t write
this program
because I’m too
dumb

Compsci 06/101, Spring 2012 17.4

One better scenario
I can’t write this
program because
it’s provably
impossible

I can’t write this
program but neither
can all these famous
people

Still another scenario, is this better?

Compsci 06/101, Spring 2012 17.5

Summary of Problem Categories
  Some problems can be solved 'efficiently'

  Run large versions fast on modern computers
  What is 'efficient'? It depends

  Some problems cannot be solved by computer.
  Provable! We can't wait for smarter algorithms

  Some problems have no efficient solution
  Provably exponential 2n so for "small" n …

  Some have no known efficient solution, but …
  If one does they all do!

Compsci 06/101, Spring 2012 17.6

Entscheidungsproblem
  What can we program?

  What kind of computer?

  What can't we program?
  Can't we try harder?

  Can we write a program that will determine if any program

P will halt when run on input S?
  Input to halt: P and S
  Output: yes/no halts

Compsci 06/101, Spring 2012 17.7

Good sites: http://del.icio.us/
  What is social bookmarking?

  Why is del.icio.us interesting?
  Who posts, who visits?

  What about a website of interesting websites?
  What would you expect to find there?
  Would the site list itself?

  What about sites that list/link to themselves?
  What about a site with all sites that list

themselves?

Compsci 06/101, Spring 2012 17.8

Bad sites: http://haz.ardo.us
  Sites listing bad sites (don’t visit them?)

  Where would this be useful?
  What about censorship (internationally?)
  Is this a good site or a bad site?

  What about sites that list/link themselves?
  Is haz.ardo.us there?

  Website of all the sites that don’t list themselves?
  Is notlisted.com listed on notlisted.com?

Compsci 06/101, Spring 2012 17.9

halting module/problem: writing doesHalt

"""
 function doesHalt returns True if progname
 halts when run on input, and False if progname
 doesn't halt (infinite loop)
"""
 def doesHalt(progname,input):
 #code here

 name = "SpreadingNews.py"
 data = "input.txt"
 if doesHalt(name,data): print "program ended!"

  We're assuming doesHalt exists – how to use it?
  It works for any program and any data! Not just

one, that's important in this context

Compsci 06/101, Spring 2012 17.10

How to tell if X stops/halts on Y
import halting
def runHalt():
 prog = "SpreadingNews.py";
 input = "["abc", "def", "hij"]"
 if halting.doesHalt(prog,input):
 print prog,"stops"
 else:
 print prog,"loops 4ever"

  Can user enter name of program, X? Input, Y?
  What's the problem with this program?

Compsci 06/101, Spring 2012 17.11

Consider this module Confuse.py

import halting
print "enter name of program",
prog = raw_input()
if halting.doesHalt(prog,prog):
 while True:
 pass
print "finished"

  We want to show writing doesHalt is impossible
  Proof by contradiction:
  Assume possible, show impossible situation results

  Can a program read a program? Itself?

Compsci 06/101, Spring 2012 17.12

Are hard problems easy? Clay Prize
  P = easy problems, NP = “hard” problems

  P means solvable in polynomial time
• Difference between N, N2, N10 ?

  NP means non-deterministic, polynomial time
• guess a solution and verify it efficiently

  Question: P = NP ?
  if yes, a whole class of difficult problems , the
NP-complete problems, can be solved efficiently

  if no, no hard problems can be solved efficiently
  showing the first problem was NP complete was
an exercise in intellectual bootstrapping,
satisfiability/Cook/(1971)

Compsci 06/101, Spring 2012 17.13

How is Python like all other
programming languages, how is it
different?

Compsci 06/101, Spring 2012 17.14

A Rose by any other name…C or Java?
  Why do we use [Python|Java] in courses ?

  [is|is not] Object oriented
  Large collection of libraries
  Safe for advanced programming and beginners
  Harder to shoot ourselves in the foot

  Why don't we use C++ (or C)?
  Standard libraries weak or non-existant

(comparatively)
  Easy to make mistakes when beginning
  No GUIs, complicated compilation model
  What about other languages?

Compsci 06/101, Spring 2012 17.15

Why do we learn other languages?
  Perl, Python, PHP, Ruby, C, C++, Java, Scheme, ML,

  Can we do something different in one language?
•  In theory: no; in practice: yes

  What languages do you know? All of them.
  In what languages are you fluent? None of them

  In later courses why do we use C or C++?
  Closer to the machine, understand abstractions at

many levels
  Some problems are better suited to one language

Compsci 06/101, Spring 2012 17.16

Find all unique/different words in a file

Across different languages: do these
languages have the same power?

Compsci 06/101, Spring 2012 17.17

Unique Words in Python
#! /usr/bin/env python

def main():
 f = open('/data/melville.txt', 'r')
 words = f.read().strip().split()
 allWords = set()
 for w in words:
 allWords.add(w)
 for word in sorted(allWords):
 print word

if __name__ == "__main__":
 main()

Compsci 06/101, Spring 2012 17.18

Unique words in Java
import java.util.*;
import java.io.*;
public class Unique {
 public static void main(String[] args)
 throws IOException{
 Scanner scan =
 new Scanner(new File("/data/melville.txt"));
 TreeSet<String> set = new TreeSet<String>();
 while (scan.hasNext()){
 String str = scan.next();
 set.add(str);
 }
 for(String s : set){
 System.out.println(s);
 }
 }
}

Compsci 06/101, Spring 2012 17.19

Unique words in C++
#include <iostream>
#include <fstream>
#include <set>
using namespace std;

int main(){
 ifstream input("/data/melville.txt");
 set<string> unique;
 string word;
 while (input >> word){
 unique.insert(word);
 }
 set<string>::iterator it = unique.begin();
 for(; it != unique.end(); it++){
 cout << *it << endl;
 }
 return 0;
}

Compsci 06/101, Spring 2012 17.20

Unique words in PHP
<?php

$wholething = file_get_contents("file:///data/melville.txt");
$wholething = trim($wholething);

$array = preg_split("/\s+/",$wholething);
$uni = array_unique($array);
sort($uni);
foreach ($uni as $word){
 echo $word."
";
}

?>

Compsci 06/101, Spring 2012 17.21

Kernighan and Ritchie
  First C book, 1978
  First ‘hello world’
  Ritchie: Unix too!

  Turing award 1983

  Kernighan: tools
  Strunk and White

  Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you are as
clever as you can be when you write it, how will you
ever debug it?

Brian Kernighan

Compsci 06/101, Spring 2012 17.22

How do we read a file in C?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int strcompare(const void * a, const void * b){
 char ** stra = (char **) a;
 char ** strb = (char **) b;
 return strcmp(*stra, *strb);
}

int main(){
 FILE * file = fopen("/data/melville.txt","r");
 char buf[1024];
 char ** words = (char **) malloc(5000*sizeof(char **));
 int count = 0;
 int k;

Compsci 06/101, Spring 2012 17.23

Storing words read when reading in C
 while (fscanf(file,"%s",buf) != EOF){
 int found = 0; // look for word just read
 for(k=0; k < count; k++){
 if (strcmp(buf,words[k]) == 0){
 found = 1;
 break;
 }
 }
 if (!found){ // not found, add to list
 words[count] = (char *) malloc(strlen(buf)+1);
 strcpy(words[count],buf);
 count++;
 }
 }

  Complexity of reading/storing? Allocation of memory?

Compsci 06/101, Spring 2012 17.24

Sorting, Printing, Freeing in C
 qsort(words,count,sizeof(char *), strcompare);
 for(k=0; k < count; k++) {
 printf("%s\n",words[k]);
 }

 for(k=0; k < count; k++){
 free(words[k]);
 }
 free(words);

}
  Sorting, printing, and freeing

  How to sort? Changing sorting mechanism?
  Why do we call free? Where required?

Compsci 06/101, Spring 2012 17.25

def is_this_the_end_of_learning_of():
 [x for x in …]

Compsci 06/101, Spring 2012 17.26

Tim French (Mathemetics)

Four FBF in common

Compsci 06/101, Spring 2012 17.27

Kristin Oakley (English, Visual/Media)

Three FBF in common

Compsci 06/101, Spring 2012 17.28

Graham Oxley (Sociology)

1 FBF in common

Compsci 06/101, Spring 2012 17.29

Dmitri Tran (I8N Comparative Studies)

invisible

Compsci 06/101, Spring 2012 17.30

Jacquelin Bascetta (Physics)

7 FBF in common

Compsci 06/101, Spring 2012 17.31

Chris Kizer (Medieval and Renaissance)

7 FBF in common

Compsci 06/101, Spring 2012 17.32

Ubong Akpaninyie

8 FBF in common

Compsci 06/101, Spring 2012 17.33

Ryan Magee (Physics)

5 FBF in common

Compsci 06/101, Spring 2012 17.34

Robby Helms (Physics)

7 FBF in common

Compsci 06/101, Spring 2012 17.35

Peter Dong (Chemistry)

6 FBF in common

Compsci 06/101, Spring 2012 17.36

Grace Wang (History/Political Science)

invisible

