Experimenting with Grammars to Generate L-Systems - in JFLAP March 29, 2012

Parts of an L-System (a type of grammar)

- Defined over an alphabet
- Three parts
- Axiom (starting place)
- Replacement rules (replaces all variables at once)
- Geometric rules (for drawing)
- g means move forward one unit with pen down
- f means move forward one unit with pen up
- + means turn right by the default angle
- - means turn left by the default angle

L-Systems

- Grammatical systems introduced by Lyndenmayer
- Model biological systems and create fractals
- Similar to Chomsky grammars, except all variables are replaced in each step, not just one!
- Successive strings are interpreted as strings of render commands and displayed graphically

L-System

An L-system is composed of three parts (Σ, h, w)
Σ finite alphabet set of symbols
h rewriting rules each symbol is
replaced by string
of symbols
w axiom starting point
h is finite substitutions, $h: \Sigma \rightarrow \Sigma^{*}$.

$$
h(w)
$$

$h(w)$ is computed by replacing every symbol in w that has a rewrite rule by that rule.

A language L of an L-system is the word sequence generated by

- $h^{0}(w)=w$
- $h^{1}(w)=h(w)$
- $h^{2}(w)=h(h(w))$

$$
\mathbf{L}=\left\{h^{i}(w) \mid i \geq 0\right\}
$$

Example:

$$
\begin{array}{lll}
\Sigma & \text { alphabet: } & \{a, b\} \\
\mathbf{h} & \text { rules: } & \mathbf{a} \rightarrow \mathbf{a a} \\
& & \mathbf{b} \rightarrow \mathbf{a b} \\
\mathbf{w} & \text { axiom: } & \mathbf{a b}
\end{array}
$$

What is the language L of strings represented by this L-system?
$\mathbf{L}=$

NOTE: If $h(a)=b b$ we will write this as a rule

$$
\mathrm{a} \rightarrow \mathrm{bb}
$$

Drawing a picture of an L-system
Defining an L-system: (3 parts in this order)

- Axiom definition: This must be the first line of the file
- Production rules: Defines the replacement rules.
- Geometric rules: Defines colors, widths, etc.

Graphically represent

Symbols for drawing and moving:

- g: draw a line one step in the current direction
- f: move forward one step in the current direction

Geometric rules

- + change direction to the right
- - change direction to the left
- \% change direction 180 degrees
- ~ decrement the width of the next lines
- [save in stack current state info
-] recover from stack state info
- \{ start filled in polygon
- \} end filled in polygon

Example: example1
axiom X

X -> gfgX
distance 15
lineWidth 5
color black
$\mathrm{L}=$
What does this draw?

NOTE: Must use spaces as separator between symbols

Example - lsys-samp1(cont)

- Derivation of strings

Example - lsys-samp2 (cont)

$$
\begin{aligned}
& \text { g[~+Yg]gX }
\end{aligned}
$$

Example - lsys-samp2

Example - tree

Example - tree rendered

Stochastic Tree

- Add a rule T -> T
- Now there is a choice for T, draw a line or don't

复 JFLAP : (tree.jff)		-
File Input Help		
Editor		
Axiom: $\mathrm{R} \sim \# \# \mathrm{~B}$		
B	$\rightarrow[\sim \# \#$ TL-B++B]	-
L	$\rightarrow[\{-g++g \%--g\}]$	
R	$\rightarrow!@ @ \mathrm{R}$	
T	$\rightarrow \mathrm{Tg}$	
T	\rightarrow T	\checkmark
-umane:		
Name	Parameter	
color	brown	\wedge
polygonColor	forestGreen	-

- JFLAP is available for free: www.jflap.org
- Duke School of Environment uses L-systems to model pine needles in Duke Forest

Classwork 5 - Exercise 1

- Write an L-system for the picture below.
- Symbols needed are: g, + and one variable
- Distance of the line is 100 , rendering at 1 draws the first line, each additional render draws another line.

Exercise 3

- Write an L-system for the picture below.
- Symbols may need: g, +, -, []
- Angle set to 90, distance set to 15
- Shows $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ renderings

Exercise 2

- Write an L-system for the picture below.
- Symbols may need: g, \%, +
- Distance set to 15 , angle set to 45 , side of square is length 30 , first diagonal line is 60
- $1^{\text {st }}, 2^{\text {nd }}$ and $6^{\text {th }}$ renderings shown

$$
\square \quad \square \quad \square
$$

