CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Recursively Enumerable Languages (handout)

Read Chapter 11 in Linz.
Definition: A language L is recursively enumerable if there exists a TM M such that $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

Definition: A language L is recursive if there exists a $T M M$ such that $L=L(M)$ and M halts on every $\mathrm{w} \in \Sigma^{+}$.

Enumeration procedure for recursive languages

To enumerate all $\mathrm{w} \in \Sigma^{+}$in a recursive language L:

- Let M be a $T M$ that recognizes $L, L=L(M)$.
- Construct 2-tape TM M'

Tape 1 will enumerate the strings in Σ^{+}
Tape 2 will enumerate the strings in L.

- On tape 1 generate the next string v in Σ^{+}
- simulate M on v
if M accepts v , then write v on tape 2 .

Enumeration procedure for recursively enumerable languages

To enumerate all $\mathrm{w} \in \Sigma^{+}$in a recursively enumerable language L :
Repeat forever

- Generate next string (Suppose k strings have been generated: $w_{1}, w_{2}, \ldots, w_{k}$)
- Run M for one step on w_{k}

Run M for two steps on w_{k-1}.

Run M for k steps on w_{1}.
If any of the strings are accepted then write them to tape 2 .

Theorem Let S be an infinite countable set. Its powerset 2^{S} is not countable.
Proof - Diagonalization

- S is countable, so it's elements can be enumerated.
$\mathrm{S}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6} \ldots\right\}$
An element $t \in 2^{S}$ can be represented by a sequence of 0 's and 1 's such that the i th position in t is 1 if s_{i} is in $t, 0$ if s_{i} is not in t .
Example, $\left\{s_{2}, s_{3}, s_{5}\right\}$ represented by
Example, set containing every other element from S , starting with s_{1} is $\left\{s_{1}, s_{3}, s_{5}, s_{7}, \ldots\right\}$ represented by
Suppose 2^{S} countable. Then we can emunerate all its elements: t_{1}, t_{2}, \ldots

	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	\ldots	
t_{1}	0	1	0	1	0	0	1		\cdots
t_{2}	1	1	0	0	1	1	0		\cdots
t_{3}	0	0	0	0	1	0	0		\cdots
t_{4}	1	0	1	0	1	1	0		\cdots
t_{5}	1	1	1	1	1	1	1	\cdots	
t_{6}	1	0	0	1	0	0	1	\cdots	
t_{7}	0	1	0	1	0	0	0	\cdots	
\cdots									

Theorem For any nonempty Σ, there exist languages that are not recursively enumerable.
Proof:

- A language is a subset of Σ^{*}.

The set of all languages over Σ is

Theorem There exists a recursively enumerable language L such that \bar{L} is not recursively enumerable.

Proof:

- Let $\Sigma=\{a\}$

Enumerate all TM's over Σ :

	a	aa	aaa	aaaa	aaaaa	\ldots
$\mathrm{L}\left(M_{1}\right)$	0	1	1	0	1	\ldots
$\mathrm{~L}\left(M_{2}\right)$	1	0	1	0	1	\ldots
$\mathrm{~L}\left(M_{3}\right)$	0	0	1	1	0	\ldots
$\mathrm{~L}\left(M_{4}\right)$	1	1	0	1	1	\ldots
$\mathrm{~L}\left(M_{5}\right)$	0	0	0	1	0	\ldots
\ldots						

The next two theorems in conjunction with the previous theorem will show that there are some languages that are recursively enumerable, but not recursive.

Theorem If languages L and \bar{L} are both RE, then L is recursive.
Proof:

- There exists an M_{1} such that M_{1} can enumerate all elements in L.

There exists an M_{2} such that M_{2} can enumerate all elements in \bar{L}.
To determine if a string w is in L or not in L perform the following algorithm:

Theorem: If L is recursive, then \bar{L} is recursive.
Proof:

- L is recursive, then there exists a TM M such that M can determine if w is in L or w is not in $\mathrm{L} . \mathrm{M}$ outputs a 1 if a string w is in L , and outputs a 0 if a string w is not in L .
Construct TM M' that does the following. M' first simulates TM M. If TM M halts with a 1 , then M' erases the 1 and writes a 0 . If TM M halts with a 0 , then M^{\prime} erases the 0 and writes a 1 .

Hierarchy of Languages:

Definition A grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ is unrestricted if all productions are of the form

$$
u \rightarrow v
$$

where $u \in(\mathrm{~V} \cup \mathrm{~T})^{+}$and $v \in(\mathrm{~V} \cup \mathrm{~T})^{*}$

Example:

Let $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}, \mathrm{X}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{S}, \mathrm{P}), \mathrm{P}=$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bAaaX} \\
& \mathrm{bAa} \rightarrow \mathrm{abA} \\
& \mathrm{AX} \rightarrow \lambda
\end{aligned}
$$

Example Find an unrestricted grammar G s.t. L(G) $=\left\{a^{n} b^{n} c^{n} \mid n>0\right\}$
$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
$\mathrm{V}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{X}\}$
$\mathrm{T}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathrm{P}=$

1) $S \rightarrow A X$
2) $\mathrm{A} \rightarrow \mathrm{aAbc}$
3) $\mathrm{A} \rightarrow \mathrm{aBbc}$
4) $\mathrm{Bb} \rightarrow \mathrm{bB}$
5) $\mathrm{Bc} \rightarrow \mathrm{D}$
6) $\mathrm{Dc} \rightarrow \mathrm{cD}$
7) $\mathrm{Db} \rightarrow \mathrm{bD}$
8) $\mathrm{DX} \rightarrow \mathrm{EXc}$

There are some rules missing in the grammar.
To derive string aaabbbccc, use productions 1,2 and 3 to generate a string that has the correct number of a's b's and c's. The a's will all be together, but the b's and c's will be intertwined.

$$
\mathrm{S} \Rightarrow \mathrm{AX} \Rightarrow \mathrm{aAbcX} \Rightarrow \text { aaAbcbcX } \Rightarrow \text { aaaBbcbcbcX }
$$

Theorem If G is an unrestricted grammar, then $L(G)$ is recursively enumerable.
Proof:

- List all strings that can be derived in one step.

List all strings that can be derived in two steps.

Theorem If L is recursively enumerable, then there exists an unrestricted grammar G such that $L=L(G)$.

Proof:

- L is recursively enumerable.
\Rightarrow there exists a TM M such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$.
$\mathrm{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$
$q_{0} w \stackrel{*}{\vdash} x_{1} q_{f} x_{2}$ for some $q_{f} \in \mathrm{~F}, x_{1}, x_{2} \in \Gamma^{*}$
Construct an unrestricted grammar G s.t. $L(G)=L(M)$.
$S \stackrel{*}{\Rightarrow} w$
Three steps

1. $S \stackrel{*}{\Rightarrow} B \ldots B \# x q_{f} y B \ldots B$
with $\mathrm{x}, \mathrm{y} \in \Gamma^{*}$ for every possible combination
2. $B \ldots B \# x q_{f} y B \ldots B \stackrel{*}{\Rightarrow} B \ldots B \# q_{0} w B \ldots B$
3. $B \ldots B \# q_{0} w B \ldots B \stackrel{*}{\Rightarrow} w$

Definition A grammar G is context-sensitive if all productions are of the form

$$
x \rightarrow y
$$

where $x, y \in(V \cup T)^{+}$and $|x| \leq|y|$

Definition L is context-sensitive (CSL) if there exists a context-sensitive grammar G such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$ or $\mathrm{L}=\mathrm{L}(\mathrm{G}) \cup\{\lambda\}$.

Theorem For every CSL L not including λ, \exists an LBA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

Theorem If L is accepted by an LBA M, then \exists CSG G s.t. $L(M)=L(G)$.

Theorem Every context-sensitive language L is recursive.

Theorem There exists a recursive language that is not CSL.

