CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Transforming Grammars (Ch. 6) (handout)

Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol S_{0},

$$
\mathrm{S}_{0} \rightarrow \mathrm{~S} \mid \lambda
$$

Theorem (Substitution) Let G be a CFG. Suppose G contains

$$
\mathrm{A} \rightarrow x_{1} \mathrm{~B} x_{2}
$$

where A and B are different variables, and B has the productions

$$
\mathrm{B} \rightarrow y_{1}\left|y_{2}\right| \ldots \mid y_{n}
$$

Then can construct G' from G by deleting

$$
\mathrm{A} \rightarrow x_{1} \mathrm{~B} x_{2}
$$

from P and adding to it

$$
\mathrm{A} \rightarrow x_{1} y_{1} x_{2}\left|x_{1} y_{2} x_{2}\right| \ldots \mid x_{1} y_{n} x_{2}
$$

Then, $L(G)=L\left(G^{\prime}\right)$.

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aBa} \\
& \mathrm{~B} \rightarrow \mathrm{aS} \mid \mathrm{a}
\end{aligned} \quad \text { becomes }
$$

Definition: A production of the form $\mathrm{A} \rightarrow \mathrm{Ax}, \mathrm{A} \in \mathrm{V}, \mathrm{x} \in(\mathrm{V} \cup \mathrm{T})^{*}$ is left recursive.

Example Previous expression grammar was left recursive.

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow \mathrm{I} \mid(\mathrm{E}) \\
& \mathrm{I} \rightarrow \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a sentential form that has other terminals in it.

Derivation of $a+b+a+a$ is:
$\mathrm{E} \Rightarrow \mathrm{E}+\mathrm{T} \Rightarrow \mathrm{E}+\mathrm{T}+\mathrm{T} \Rightarrow \mathrm{E}+\mathrm{T}+\mathrm{T}+\mathrm{T} \stackrel{*}{\Rightarrow} \mathrm{a}+\mathrm{T}+\mathrm{T}+\mathrm{T}$
We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and no other terminals.

Theorem (Removing Left recursion) Let $G=(V, T, S, P)$ be a CFG. Divide productions for variable A into left-recursive and non left-recursive productions:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~A} x_{1}\left|\mathrm{~A} x_{2}\right| \ldots \mid \mathrm{A} x_{n} \\
& \mathrm{~A} \rightarrow y_{1}\left|y_{2}\right| \ldots \mid y_{m}
\end{aligned}
$$

where x_{i}, y_{i} are in $(\mathrm{V} \cup \mathrm{T})^{*}$.
Then $\mathrm{G}^{\prime}=\left(\mathrm{V} \cup\{\mathrm{Z}\}, \mathrm{T}, \mathrm{S}, \mathrm{P}^{\prime}\right)$ and P^{\prime} replaces rules of form above by

$$
\begin{aligned}
& \mathrm{A} \rightarrow y_{i} \mid y_{i} \mathrm{Z}, \mathrm{i}=1,2, \ldots, \mathrm{~m} \\
& \mathrm{Z} \rightarrow x_{i} \mid x_{i} \mathrm{Z}, \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{aligned}
$$

Example:

$$
\begin{array}{ll}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} & \text { becomes } \\
\mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} \mid \mathrm{F} & \text { becomes }
\end{array}
$$

Now, Derivation of $\mathrm{a}+\mathrm{b}+\mathrm{a}+\mathrm{a}$ is:

Useless productions

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{Sa} \\
& \mathrm{C} \rightarrow \mathrm{cBc} \mid \mathrm{a}
\end{aligned}
$$

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then $\exists G^{\prime}$ that does not contain any useless variables or productions s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$.

To Remove Useless Productions:

Let $G=(V, T, S, P)$.
I. Compute $\mathrm{V}_{1}=\{$ Variables that can derive strings of terminals $\}$

1. $V_{1}=\emptyset$
2. Repeat until no more variables added

- For every $\mathrm{A} \in \mathrm{V}$ with $\mathrm{A} \rightarrow x_{1} x_{2} \ldots x_{n}, x_{i} \in\left(\mathrm{~T}^{*} \cup \mathrm{~V}_{1}\right)$, add A to V_{1}

3. $\mathrm{P}_{1}=$ all productions in P with symbols in $\left(\mathrm{V}_{1} \cup \mathrm{~T}\right)^{*}$

Then $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{~T}, \mathrm{~S}, \mathrm{P}_{1}\right)$ has no variables that can't derive strings.
II. Draw Variable Dependency Graph

For $\mathrm{A} \rightarrow \mathrm{xBy}$, draw $\mathrm{A} \rightarrow \mathrm{B}$.
Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G' is s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$ and G^{\prime} has no useless productions.

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aB} \mid \mathrm{bA} \\
& \mathrm{~A} \rightarrow \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{Sa} \mid \mathrm{b} \\
& \mathrm{C} \rightarrow \mathrm{cBc} \mid \mathrm{a} \\
& \mathrm{D} \rightarrow \mathrm{bCb} \\
& \mathrm{E} \rightarrow \mathrm{Aa} \mid \mathrm{b}
\end{aligned}
$$

Theorem (remove λ productions) Let G be a CFG with λ not in $\mathrm{L}(\mathrm{G})$. Then \exists a CFG G' having no λ-productions s.t. $L(G)=L\left(G^{\prime}\right)$.

To Remove λ-productions

1. Let $V_{n}=\{\mathrm{A} \mid \exists$ production $\mathrm{A} \rightarrow \lambda\}$
2. Repeat until no more additions

- if $\mathrm{B} \rightarrow \mathrm{A}_{1} \mathrm{~A}_{2} \ldots \mathrm{~A}_{m}$ and $\mathrm{A}_{i} \in V_{n}$ for all i, then put B in V_{n}

3. Construct G^{\prime} with productions P^{\prime} s.t.

- If $\mathrm{A} \rightarrow x_{1} x_{2} \ldots x_{m} \in \mathrm{P}, m \geq 1$, then put all productions formed when x_{j} is replaced by λ (for all $\left.x_{j} \in V_{n}\right)$ s.t. \mid rhs $\mid \geq 1$ into P^{\prime}.

Example:

$\mathrm{S} \rightarrow \mathrm{Ab}$
$\mathrm{A} \rightarrow \mathrm{BCB} \mid \mathrm{Aa}$
$\mathrm{B} \rightarrow \mathrm{b} \mid \lambda$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \lambda$

Definition Unit Production

$$
\mathrm{A} \rightarrow \mathrm{~B}
$$

where $A, B \in V$.

Consider removing unit productions:

Suppose we have

$$
\begin{array}{ll}
\mathrm{A} \rightarrow \mathrm{~B} & \text { becomes } \\
\mathrm{B} \rightarrow \mathrm{a} \mid \mathrm{ab} &
\end{array}
$$

But what if we have
$\mathrm{A} \rightarrow \mathrm{B} \quad$ becomes
$\mathrm{B} \rightarrow \mathrm{C}$
$\mathrm{C} \rightarrow \mathrm{A}$

Theorem (Remove unit productions) Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a CFG without λ-productions. Then $\exists \mathrm{CFG}$ $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{T}^{\prime}, \mathrm{S}, \mathrm{P}^{\prime}\right)$ that does not have any unit-productions and $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$.

To Remove Unit Productions:

1. Find for each A, all B s.t. $A \stackrel{*}{\Rightarrow} B$ (Draw a dependency graph)
2. Construct $\mathrm{G}^{\prime}=\left(\mathrm{V}^{\prime}, \mathrm{T}^{\prime}, \mathrm{S}, \mathrm{P}^{\prime}\right)$ by
(a) Put all non-unit productions in P^{\prime}
(b) For all $\mathrm{A} \stackrel{*}{\Rightarrow} \mathrm{~B}$ s.t. $\mathrm{B} \rightarrow y_{1}\left|y_{2}\right| \ldots y_{n} \in \mathrm{P}^{\prime}$, put $\mathrm{A} \rightarrow y_{1}\left|y_{2}\right| \ldots y_{n} \in \mathrm{P}^{\prime}$

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{AB} \\
& \mathrm{~A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C} \mid \mathrm{Bb} \\
& \mathrm{C} \rightarrow \mathrm{~A}|\mathrm{c}| \mathrm{Da} \\
& \mathrm{D} \rightarrow \mathrm{~A}
\end{aligned}
$$

Theorem Let L be a CFL that does not contain λ. Then \exists a CFG for L that does not have any useless productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions
2. Remove unit-productions
3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.

Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

$$
\mathrm{A} \rightarrow \mathrm{BC} \quad \text { or } \mathrm{A} \rightarrow \mathrm{a}
$$

where $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{V}$ and $\mathrm{a} \in \mathrm{T}$.
Theorem: Any CFG G with λ not in $L(G)$ has an equivalent grammar in CNF.
Proof:

1. Remove λ-productions, unit productions, and useless productions.
2. For every rhs of length >1, replace each terminal x_{i} by a new variable C_{j} and add the production $C_{j} \rightarrow x_{i}$.
3. Replace every rhs of length >2 by a series of productions, each with rhs of length 2. QED.

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{CBcd} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \\
& \mathrm{C} \rightarrow \mathrm{Cc} \mid \mathrm{e}
\end{aligned}
$$

Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

$$
A \rightarrow a x
$$

where $\mathrm{a} \in \mathrm{T}$ and $\mathrm{x} \in \mathrm{V}^{*}$
Theorem For every CFG G with λ not in $\mathrm{L}(\mathrm{G}), \exists$ a grammar in GNF.
Proof:

1. Rewrite grammar in CNF.
2. Relabel Variables $A_{1}, A_{2}, \ldots A_{n}$
3. Eliminate left recursion and use substitution to get all productions into the form:

$$
\begin{aligned}
& A_{i} \rightarrow A_{j} x_{j}, j>i \\
& Z_{i} \rightarrow A_{j} x_{j}, j \leq n \\
& A_{i} \rightarrow \mathrm{a} x_{i}
\end{aligned}
$$

where $\mathrm{a} \in \mathrm{T}, x_{i} \in \mathrm{~V}^{*}$, and Z_{i} are new variables introduced for left recursion.
4. All productions with A_{n} are in the correct form, $A_{n} \rightarrow \mathrm{a} x_{n}$. Use these productions as substitutions to get A_{n-1} productions in the correct form. Repeat with A_{n-2}, A_{n-3}, etc until all productions are in the correct form.

