
CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger

Section: Transforming Grammars (Ch. 6) (handout)

Methods for Transforming Grammars (Read Ch 6 in Linz Book)

We will consider CFL without λ. It would be easy to add λ to any grammar by adding a new start symbol
S0,

S0 → S | λ

Theorem (Substitution) Let G be a CFG. Suppose G contains

A → x1Bx2

where A and B are different variables, and B has the productions

B → y1|y2| . . . |yn

Then can construct G’ from G by deleting

A → x1Bx2

from P and adding to it

A → x1y1x2|x1y2x2| . . . |x1ynx2

Then, L(G)=L(G’).

Example:

S → aBa becomes
B → aS | a

Definition: A production of the form A → Ax, A∈V, x∈(V ∪ T)∗ is left recursive.

1

Example Previous expression grammar was left recursive.

E → E+T | T
T → T∗F | F
F → I | (E)
I → a | b

A top-down parser would want to derive the leftmost terminal as soon as possible. But in the left recursive
grammar above, in order to derive a sentential form that has the leftmost terminal, we have to derive a
sentential form that has other terminals in it.

Derivation of a+b+a+a is:

E ⇒ E+T ⇒ E+T+T ⇒ E+T+T+T
∗⇒ a+T+T+T

We will eliminate the left recursion so that we can derive a sentential form with the leftmost terminal and
no other terminals.

Theorem (Removing Left recursion) Let G=(V,T,S,P) be a CFG. Divide productions for variable A into
left-recursive and non left-recursive productions:

A → Ax1 | Ax2 | . . . | Axn
A → y1|y2| . . . |ym

where xi, yi are in (V ∪ T)∗.

Then G’=(V∪{Z}, T, S, P’) and P’ replaces rules of form above by

A → yi|yiZ, i=1,2,. . .,m
Z → xi|xiZ, i=1,2,. . .,n

Example:

E → E+T|T becomes

T → T∗F|F becomes

Now, Derivation of a+b+a+a is:

2

Useless productions

S → aB | bA
A → aA
B → Sa
C → cBc | a

What can you say about this grammar?

Theorem (useless productions) Let G be a CFG. Then ∃ G’ that does not contain any useless variables or
productions s.t. L(G)=L(G’).

To Remove Useless Productions:

Let G=(V,T,S,P).

I. Compute V1={Variables that can derive strings of terminals}

1. V1=∅

2. Repeat until no more variables added

• For every A∈V with A→x1x2 . . . xn, xi ∈(T∗ ∪ V1), add A to V1

3. P1 = all productions in P with symbols in (V1 ∪ T)∗

Then G1=(V1,T,S,P1) has no variables that can’t derive strings.

II. Draw Variable Dependency Graph

For A → xBy, draw A→B.

Remove productions for V if there is no path from S to V in the dependency graph. Resulting Grammar G’
is s.t. L(G)=L(G’) and G’ has no useless productions.

Example:

S → aB | bA
A → aA
B → Sa | b
C → cBc | a
D → bCb
E → Aa | b

3

Theorem (remove λ productions) Let G be a CFG with λ not in L(G). Then ∃ a CFG G’ having no
λ-productions s.t. L(G)=L(G’).

To Remove λ-productions

1. Let Vn = {A | ∃ production A→λ }

2. Repeat until no more additions

• if B→A1A2. . .Am and Ai∈ Vn for all i, then put B in Vn

3. Construct G’ with productions P’ s.t.

• If A→ x1x2 . . . xm ∈P, m ≥ 1, then put all productions formed when xj is replaced by λ (for all
xj ∈ Vn) s.t. |rhs| ≥ 1 into P’.

Example:

S → Ab
A → BCB | Aa
B → b | λ
C → cC | λ

4

Definition Unit Production

A → B

where A,B ∈V.

Consider removing unit productions:

Suppose we have

A → B becomes
B → a | ab

But what if we have

A → B becomes
B → C
C → A

Theorem (Remove unit productions) Let G=(V,T,S,P) be a CFG without λ-productions. Then ∃ CFG
G’=(V’,T’,S,P’) that does not have any unit-productions and L(G)=L(G’).

To Remove Unit Productions:

1. Find for each A, all B s.t. A
∗⇒B (Draw a dependency graph)

2. Construct G’=(V’,T’,S,P’) by

(a) Put all non-unit productions in P’

(b) For all A
∗⇒B s.t. B→y1|y2| . . . yn ∈ P’, put A→y1|y2| . . . yn ∈ P’

5

Example:

S → AB
A → B
B → C | Bb
C → A | c | Da
D → A

Theorem Let L be a CFL that does not contain λ. Then ∃ a CFG for L that does not have any useless
productions, λ-productions, or unit-productions.

Proof

1. Remove λ-productions

2. Remove unit-productions

3. Remove useless productions

Note order is very important. Removing λ-productions can create unit-productions! QED.

6

Definition: A CFG is in Chomsky Normal Form (CNF) if all productions are of the form

A → BC or A → a

where A,B,C∈V and a∈T.

Theorem: Any CFG G with λ not in L(G) has an equivalent grammar in CNF.

Proof:

1. Remove λ-productions, unit productions, and useless productions.

2. For every rhs of length > 1, replace each terminal xi by a new variable Cj and add the production
Cj → xi.

3. Replace every rhs of length > 2 by a series of productions, each with rhs of length 2. QED.

Example:

S → CBcd
B → b
C → Cc | e

7

Definition: A CFG is in Greibach normal form (GNF) if all productions have the form

A→ ax

where a∈T and x∈V∗

Theorem For every CFG G with λ not in L(G), ∃ a grammar in GNF.

Proof:

1. Rewrite grammar in CNF.

2. Relabel Variables A1, A2, . . . An

3. Eliminate left recursion and use substitution to get all productions into the form:

Ai → Ajxj , j > i
Zi → Ajxj , j ≤ n
Ai → axi

where a∈T, xi ∈V∗, and Zi are new variables introduced for left recursion.

4. All productions with An are in the correct form, An → axn. Use these productions as substitutions
to get An−1 productions in the correct form. Repeat with An−2, An−3, etc until all productions are
in the correct form.

8

