CPS 140 - Mathematical Foundations of CS
Dr. S. Rodger
Section: Parsing (handout)

Parsing

Parsing: Deciding if $x \in \Sigma^{*}$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Aa} \\
& \mathrm{~A} \rightarrow \mathrm{AA}|\mathrm{ABa}| \lambda \\
& \mathrm{B} \rightarrow \mathrm{BBa}|\mathrm{~b}| \lambda
\end{aligned}
$$

Is ba in $\mathrm{L}(\mathrm{G})$? Running time?

Remove λ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{Aa} \mid \mathrm{a} \\
& \mathrm{~A} \rightarrow \mathrm{AA}|\mathrm{ABa}| \mathrm{Aa}|\mathrm{Ba}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{BBa}|\mathrm{Ba}| \mathrm{a} \mid \mathrm{b}
\end{aligned}
$$

Is ba in $L(G)$? Running time?

Top-down Parser:

- Start with S and try to derive the string.

$$
\mathrm{S} \rightarrow \mathrm{aS} \mid \mathrm{b}
$$

- Examples: LL Parser, Recursive Descent

Bottom-up Parser:

- Start with string, work backwards, and try to derive S.
- Examples: Shift-reduce, Operator-Precedence, LR Parser

We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

$$
\begin{aligned}
& \mathrm{G}=(\mathrm{V}, \mathrm{~T}, \mathrm{~S}, \mathrm{P}) \\
& \mathrm{w}, \mathrm{v} \in(\mathrm{~V} \cup \mathrm{~T})^{*} \\
& \mathrm{a} \in \mathrm{~T} \\
& \mathrm{X}, \mathrm{~A}, \mathrm{~B} \in \mathrm{~V} \\
& \mathrm{X}_{I} \in(\mathrm{~V} \cup \mathrm{~T})^{+}
\end{aligned}
$$

Definition: $\operatorname{FIRST}(\mathrm{w})=$ the set of terminals that begin strings derived from w .

If $\mathrm{w} \stackrel{*}{\Rightarrow} \mathrm{av}$ then
a is in $\operatorname{FIRST}(w)$
If $\mathrm{w} \stackrel{*}{\Rightarrow} \lambda$ then
λ is in $\operatorname{FIRST}(w)$

To compute FIRST:

1. $\operatorname{FIRST}(a)=\{a\}$
2. $\operatorname{FIRST}(\mathrm{X})$
(a) If $\mathrm{X} \rightarrow$ aw then a is in $\operatorname{FIRST}(\mathrm{X})$
(b) IF $\mathrm{X} \rightarrow \lambda$ then λ is in $\operatorname{FIRST}(\mathrm{X})$
(c) If $\mathrm{X} \rightarrow \mathrm{Aw}$ and $\lambda \in \operatorname{FIRST}(\mathrm{A})$ then Everything in FIRST(w) is in FIRST(X)
3. In general, $\operatorname{FIRST}\left(\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} . . \mathrm{X}_{K}\right)=$

- $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$
- $\cup \operatorname{FIRST}\left(\mathrm{X}_{2}\right)$ if λ is in $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$
- $\cup \operatorname{FIRST}\left(\mathrm{X}_{3}\right)$ if λ is in $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$ and λ is in $\operatorname{FIRST}\left(\mathrm{X}_{2}\right)$
- $\cup \operatorname{FIRST}\left(\mathrm{X}_{K}\right)$ if λ is in $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$ and λ is in $\operatorname{FIRST}\left(\mathrm{X}_{2}\right)$
\ldots and λ is in $\operatorname{FIRST}\left(\mathrm{X}_{K-1}\right)$
- $-\{\lambda\}$ if $\lambda \notin \operatorname{FIRST}\left(\mathrm{X}_{J}\right)$ for all J

Example: $L=\left\{a^{n} b^{m} c^{n}: n \geq 0,0 \leq m \leq 1\right\}$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSc} \mid \mathrm{B} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda
\end{aligned}
$$

$\operatorname{FIRST}(\mathrm{B})=$
$\operatorname{FIRST}(\mathrm{S})=$
$\operatorname{FIRST}(\mathrm{Sc})=$

Example

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{BCD} \mid \mathrm{aD} \\
& \mathrm{~A} \rightarrow \mathrm{CEB} \mid \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda \\
& \mathrm{C} \rightarrow \mathrm{~dB} \mid \lambda \\
& \mathrm{D} \rightarrow \mathrm{cA} \mid \lambda \\
& \mathrm{E} \rightarrow \mathrm{e} \mid \mathrm{fE}
\end{aligned}
$$

```
FIRST(S) =
FIRST(A)=
FIRST(B)=
FIRST(C) =
FIRST(D)=
FIRST(E)=
```

Definition: FOLLOW $(X)=$ set of terminals that can appear to the right of X in some derivation.

If $S \stackrel{*}{\Rightarrow}$ wAav then
a is in FOLLOW(A)
(where w and v are strings of terminals and variables, a is a terminal, and A is a variable)

To compute FOLLOW:

1. $\$$ is in $\operatorname{FOLLOW}(\mathrm{S})$
2. If $\mathrm{A} \rightarrow \mathrm{wBv}$ and $\mathrm{v} \neq \lambda$ then
$\operatorname{FIRST}(\mathrm{v})-\{\lambda\}$ is in FOLLOW(B)
3. IF $\mathrm{A} \rightarrow \mathrm{wB}$ OR
$\mathrm{A} \rightarrow \mathrm{wBv}$ and λ is in $\operatorname{FIRST}(\mathrm{v})$ then
FOLLOW(A) is in FOLLOW(B)
4. λ is never in FOLLOW

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSc} \mid \mathrm{B} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda
\end{aligned}
$$

$\operatorname{FOLLOW}(S)=$
FOLLOW $(\mathrm{B})=$

Example:

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{BCD} \mid \mathrm{aD} \\
& \mathrm{~A} \rightarrow \mathrm{CEB} \mid \mathrm{aA} \\
& \mathrm{~B} \rightarrow \mathrm{~b} \mid \lambda \\
& \mathrm{C} \rightarrow \mathrm{~dB} \mid \lambda \\
& \mathrm{D} \rightarrow \mathrm{cA} \mid \lambda \\
& \mathrm{E} \rightarrow \mathrm{e} \mid \mathrm{fE}
\end{aligned}
$$

$\operatorname{FOLLOW}(\mathrm{S})=$
$\operatorname{FOLLOW}(\mathrm{A})=$
$\operatorname{FOLLOW}(\mathrm{B})=$
FOLLOW $(\mathrm{C})=$
$\operatorname{FOLLOW}(\mathrm{D})=$
$\operatorname{FOLLOW}(\mathrm{E})=$

