Chapter 7.2

Theorem Given NPDA M that accepts by final state, \exists NPDA M' that accepts by empty stack s.t. $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$.

- Proof (sketch)
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$
Construct M' $=\left(\mathrm{Q}^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{s}, \mathrm{z}^{\prime}, \mathrm{F}^{\prime}\right)$

Theorem Given NPDA M that accepts by empty stack, \exists NPDA M' that accepts by final state.

- Proof: (sketch)
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$
Construct $\mathrm{M}^{\prime}=\left(\mathrm{Q}^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, q_{s}, \mathrm{z}^{\prime}, \mathrm{F}^{\prime}\right)$

Theorem For any CFL L not containing λ, \exists an NPDA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.

- Proof (sketch)

Given (λ-free) CFL L.
$\Rightarrow \exists$ CFG G such that $\mathrm{L}=\mathrm{L}(\mathrm{G})$.
$\Rightarrow \exists \mathrm{G}^{\prime}$ in GNF , s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}\left(\mathrm{G}^{\prime}\right)$.
$\mathrm{G}^{\prime}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$. All productions in P are of the form:

Example: Let $\mathrm{G}^{\prime}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P}), \mathrm{P}=$

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSA}|\mathrm{aAA}| \mathrm{b} \\
& \mathrm{~A} \rightarrow \mathrm{bBBB} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

Theorem Given a NPDA M, \exists a NPDA M' s.t. all transitions have the form $\delta\left(q_{i}, \mathrm{a}, \mathrm{A}\right)=\left\{c_{1}, c_{2}, \ldots c_{n}\right\}$ where

$$
\begin{array}{ll}
& c_{i}=\left(q_{j}, \lambda\right) \\
\text { or } & c_{i}=\left(q_{j}, \mathrm{BC}\right)
\end{array}
$$

Each move either increases or decreases stack contents by a single symbol.

- Proof (sketch)

Theorem If $\mathrm{L}=\mathrm{L}(\mathrm{M})$ for some NPDA M , then L is a CFL.

- Proof: Given NPDA M.

First, construct an equivalent NPDA M that will be easier to work with. Construct M' such that

1. accepts if stack is empty
2. each move increases or decreases stack content by a single symbol. (can only push 2 variables or no variables with each transition)
$\mathrm{M}^{\prime}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$
Construct $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{S}, \mathrm{P})$ where
$\mathrm{V}=\left\{\left(q_{i} c q_{j}\right) \mid q_{i}, q_{j} \in Q, c \in \Gamma\right\}$
$\left(q_{i} c q_{j}\right)$ represents "starting at state q_{i} the stack contents are $c w, w \in \Gamma^{*}$, some path is followed to state q_{j} and the contents of the stack are now w ".
Goal: $\quad\left(q_{0} z q_{f}\right)$ which will be the start symbol in the grammar.
Meaning: We start in state q_{0} with z on the stack and process the input tape. Eventually we will reach the final state q_{f} and the stack will be empty. (Along the way we may push symbols on the stack, but these symbols will be popped from the stack).

Example:

$\mathrm{L}(\mathrm{M})=\left\{a a^{*} b\right\}, \mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right), \mathrm{Q}=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \Sigma=\{a, b\}, \Gamma=\{A, z\}, \mathrm{F}=\{ \} . \mathrm{M}$ accepts by empty stack.

Construct the grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$,
$\mathrm{V}=\left\{\left(q_{0} A q_{0}\right),\left(q_{0} z q_{0}\right),\left(q_{0} A q_{1}\right),\left(q_{0} z q_{1}\right), \ldots\right\}$
$\mathrm{T}=\Sigma$
$\mathrm{S}=\left(q_{0} z q_{2}\right)$
$\mathrm{P}=$

From transition $1 \quad\left(q_{0} A q_{1}\right) \rightarrow \quad b$
From transition $2 \quad\left(q_{1} z q_{2}\right) \rightarrow \lambda$
From transition $3 \quad\left(q_{0} A q_{3}\right) \rightarrow \quad a$
From transition $4 \quad\left(q_{0} z q_{0}\right) \rightarrow \quad a\left(q_{0} A q_{0}\right)\left(q_{0} z q_{0}\right) \mid$
$a\left(q_{0} A q_{1}\right)\left(q_{1} z q_{0}\right) \mid$
$a\left(q_{0} A q_{2}\right)\left(q_{2} z q_{0}\right) \mid$
$a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{0}\right)$
$\left(q_{0} z q_{1}\right) \rightarrow \quad a\left(q_{0} A q_{0}\right)\left(q_{0} z q_{1}\right) \mid$
$a\left(q_{0} A q_{1}\right)\left(q_{1} z q_{1}\right) \mid$
$a\left(q_{0} A q_{2}\right)\left(q_{2} z q_{1}\right) \mid$
$a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{1}\right)$
$\left(q_{0} z q_{2}\right) \rightarrow \quad a\left(q_{0} A q_{0}\right)\left(q_{0} z q_{2}\right) \mid$
$a\left(q_{0} A q_{1}\right)\left(q_{1} z q_{2}\right) \mid$
$a\left(q_{0} A q_{2}\right)\left(q_{2} z q_{2}\right) \mid$
$a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{2}\right)$
$\left(q_{0} z q_{3}\right) \rightarrow \quad a\left(q_{0} A q_{0}\right)\left(q_{0} z q_{3}\right) \mid$
$a\left(q_{0} A q_{1}\right)\left(q_{1} z q_{3}\right) \mid$
$a\left(q_{0} A q_{2}\right)\left(q_{2} z q_{3}\right) \mid$
$a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{3}\right)$

From transition $5 \quad\left(q_{3} z q_{0}\right) \rightarrow \quad\left(q_{0} A q_{0}\right)\left(q_{0} z q_{0}\right) \mid$ $\left(q_{0} A q_{1}\right)\left(q_{1} z q_{0}\right) \mid$ $\left(q_{0} A q_{1}\right)\left(q_{1} z q_{0}\right)$
$\left(q_{0} A q_{2}\right)\left(q_{2} z q_{0}\right) \mid$
$\left(q_{3} z q_{1}\right) \rightarrow \quad \begin{aligned} & \left(q_{0} A q_{3}\right)\left(q_{3} z q_{0}\right) \\ & \left(q_{0} A q_{0}\right)\left(q_{0} z q_{1}\right)\end{aligned}$
$\left(q_{0} A q_{1}\right)\left(q_{1} z q_{1}\right) \mid$
$\left(q_{0} A q_{2}\right)\left(q_{2} z q_{1}\right) \mid$
$\left(q_{0} A q_{3}\right)\left(q_{3} z q_{1}\right)$
$\left(q_{3} z q_{2}\right) \rightarrow \quad\left(q_{0} A q_{0}\right)\left(q_{0} z q_{2}\right) \mid$
$\left(q_{0} A q_{1}\right)\left(q_{1} z q_{2}\right) \mid$
$\left(q_{0} A q_{2}\right)\left(q_{2} z q_{2}\right) \mid$
$\left(q_{0} A q_{3}\right)\left(q_{3} z q_{2}\right)$
$\left(q_{3} z q_{3}\right) \rightarrow \quad\left(q_{0} A q_{0}\right)\left(q_{0} z q_{3}\right) \mid$
$\left(q_{0} A q_{1}\right)\left(q_{1} z q_{3}\right) \mid$
$\left(q_{0} A q_{2}\right)\left(q_{2} z q_{3}\right) \mid$
$\left(q_{0} A q_{3}\right)\left(q_{3} z q_{3}\right)$

Recognizing aaab in M:

$$
\begin{aligned}
\left(q_{0}, a a a b, z\right) & \vdash\left(q_{0}, a a b, A z\right) \\
& \vdash\left(q_{3}, a b, z\right) \\
& \vdash\left(q_{0}, a b, A z\right) \\
& \vdash\left(q_{3}, b, z\right) \\
& \vdash\left(q_{0}, b, A z\right) \\
& \vdash\left(q_{1}, \lambda, z\right) \\
& \vdash\left(q_{2}, \lambda, \lambda\right)
\end{aligned}
$$

Derivation of string aaab in G:

$$
\begin{aligned}
\left(q_{0} z q_{2}\right) & \Rightarrow a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{2}\right) \\
& \Rightarrow a a\left(q_{3} z q_{2}\right) \\
& \Rightarrow a a\left(q_{0} A q_{3}\right)\left(q_{3} z q_{2}\right) \\
& \Rightarrow a a a\left(q_{3} z q_{2}\right) \\
& \Rightarrow a a a\left(q_{0} A q_{1}\right)\left(q_{1} z q_{2}\right) \\
& \Rightarrow a a a b\left(q_{1} z q_{2}\right) \\
& \Rightarrow a a a b
\end{aligned}
$$

Chapter 7.3

Definition: A PDA M $=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, q_{0}, \mathrm{z}, \mathrm{F}\right)$ is deterministic if for every $q \in \mathrm{Q}, a \in \Sigma \cup\{\lambda\}, b \in \Gamma$

1. $\delta(q, a, b)$ contains at most 1 element
2. if $\delta(q, \lambda, b) \neq \emptyset$ then $\delta(q, c, b)=\emptyset$ for all $c \in \Sigma$

Definition: L is DCFL iff \exists DPDA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$.
Examples:

1. Previous pda for $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is deterministic.
2. Previous pda for $\left\{a^{n} b^{m} c^{n+m} \mid n, m>0\right\}$ is deterministic.
3. Previous pda for $\left\{w w^{R} \mid w \in \Sigma^{+}\right\}, \Sigma=\{a, b\}$ is nondeterministic.

Note: There are CFL's that are not deterministic.
$\mathrm{L}=\left\{a^{n} b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} b^{2 n} \mid n \geq 1\right\}$ is a CFL and not a DCFL.

- Proof: $L=\left\{a^{n} b^{n}: n \geq 1\right\} \cup\left\{a^{n} b^{2 n}: n \geq 1\right\}$

It is easy to construct a NPDA for $\left\{a^{n} b^{n}: n \geq 1\right\}$ and a NPDA for $\left\{a^{n} b^{2 n}: n \geq 1\right\}$. These two can be joined together by a new start state and λ-transitions to create a NPDA for L. Thus, L is CFL.
Now show L is not a DCFL. Assume that there is a deterministic PDA M such that $L=L(M)$. We will construct a PDA that recognizes a language that is not a CFL and derive a contradiction.
Construct a PDA M^{\prime} as follows:

1. Create two copies of $M: M_{1}$ and M_{2}. The same state in M_{1} and M_{2} are called cousins.
2. Remove accept status from accept states in M_{1}, remove initial status from initial state in M_{2}. In our new PDA, we will start in M_{1} and accept in M_{2}.
3. Outgoing arcs from old accept states in M_{1}, change to end up in the cousin of its destination in M_{2}. This joins M_{1} and M_{2} into one PDA. There must be an outgoing arc since you must recognize both $a^{n} b^{n}$ and $a^{n} b^{2 n}$. After reading $n b$'s, must accept if no more b 's and continue if there are more b 's.
4. Modify all transitions that read a b and have their destinations in M_{2} to read a c.

This is the construction of our new PDA.
When we read $a^{n} b^{n}$ and end up in an old accept state in M_{1}, then we will transfer to M_{2} and read the rest of $a^{n} b^{2 n}$. Only the b 's in M_{2} have been replaced by c 's, so the new machine accepts $a^{n} b^{n} c^{n}$.
The language accepted by our new PDA is $a^{n} b^{n} c^{n}$. But this is not a CFL. Contradiction! Thus there is no deterministic PDA M such that $L(M)=L$. Q.E.D.

