CPS 140 - Mathematical Foundations of CS
Dr. Susan Rodger
Section: Regular Languages (Ch. 3) (handout)

## Regular Expressions

Method to represent strings in a language

```
+ union (or)
- concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)
```


## Example:

$(a+b)^{*} \circ a \circ(a+b)^{*}$

## Example:

$(a a)^{*}$

## Definition Given $\Sigma$,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.
2. If $r$ and $s$ are R.E. then

- $\mathrm{r}+\mathrm{s}$ is R.E.
- rs is R.E.
- (r) is a R.E.
- $r^{*}$ is R.E.

3. $r$ is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: $\mathrm{L}(\mathrm{r})=$ language denoted by R.E. r.

1. $\emptyset,\{\lambda\},\{a\}$ are L denoted by a R.E.
2. if $r$ and $s$ are R.E. then
(a) $\mathrm{L}(\mathrm{r}+\mathrm{s})=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\mathrm{s})$
(b) $\mathrm{L}(\mathrm{rs})=\mathrm{L}(\mathrm{r}) \circ \mathrm{L}(\mathrm{s})$
(c) $\mathrm{L}((\mathrm{r}))=\mathrm{L}(\mathrm{r})$
(d) $\mathrm{L}\left((\mathrm{r})^{*}\right)=\left(\mathrm{L}(\mathrm{r})^{*}\right)$

## Precedence Rules

* highest
$\circ$
$+$


## Example:

$a b^{*}+c=$

## Examples:

1. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has an odd number of $a$ 's followed by an even number of $b$ 's $\}$.
2. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has no more than $3 a$ 's and must end in $\left.a b\right\}$.
3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.
Theorem Let $r$ be a R.E. Then $\exists$ NFA M s.t. $L(M)=L(r)$.

- Proof:
$\emptyset$
$\{\lambda\}$
$\{a\}$
Suppose r and s are R.E.

1. $\mathrm{r}+\mathrm{s}$
2. ros
3. $\mathrm{r}^{*}$

## Example

$a b^{*}+c$

Theorem Let L be regular. Then $\exists$ R.E. r s.t. $\mathrm{L}=\mathrm{L}(\mathrm{r})$.
Proof Idea: remove states sucessively, generating equivalent generalized transition graphs (GTG) until only two states are left (one initial state and one final state).

- Proof:

L is regular
$\Rightarrow \exists$

1. Assume M has one final state and $q_{0} \notin F$
2. Convert to a generalized transition graph (GTG), all possible edges are present.

If no edge, label with
Let $r_{i j}$ stand for label of the edge from $q_{i}$ to $q_{j}$
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:
$r=\left(r_{i i}^{*} r_{i j} r_{j j}^{*} r_{j i}\right)^{*} r_{i i}^{*} r_{i j} r_{j j}^{*}$
4. If the GTG has three states then it must have the following form:


In this case, make the following replacements:

| REPLACE | WITH |
| :--- | :--- |
| $r_{i i}$ | $r_{i i}+r_{i k} r_{k k}^{*} r_{k i}$ |
| $r_{j j}$ | $r_{j j}+r_{j k} r_{k k}^{*} r_{k j}$ |
| $r_{i j}$ | $r_{i j}+r_{i k} r_{k k}^{*} r_{k j}$ |
| $r_{j i}$ | $r_{j i}+r_{j k} r_{k k}^{*} r_{k i}$ |

After these replacements, remove state $q_{k}$ and its edges.
5. If the GTG has four or more states, pick a state $q_{k}$ to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule
$r_{o p}$ replaced with $r_{o p}+r_{o k} r_{k k}^{*} r_{k p}$
with different values of o and p .
When done, remove $q_{k}$ and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions $r$ and $s$ with:

$$
\begin{aligned}
& r+r=r \\
& s+r^{*} s= \\
& r+\emptyset= \\
& r \emptyset= \\
& \emptyset^{*}= \\
& r \lambda= \\
& (\lambda+r)^{*}= \\
& (\lambda+r) r^{*}=
\end{aligned}
$$

and similar rules.

## Example:



## Section 3.3

Grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
V variables (nonterminals)
T terminals
S start symbol
P productions

## Right-linear grammar:

all productions of form
$\mathrm{A} \rightarrow \mathrm{xB}$
$\mathrm{A} \rightarrow \mathrm{x}$
where $A, B \in V, x \in T^{*}$

## Left-linear grammar:

all productions of form
$\mathrm{A} \rightarrow \mathrm{Bx}$
$\mathrm{A} \rightarrow \mathrm{x}$
where $A, B \in V, x \in T^{*}$

## Definition:

A regular grammar is a right-linear or left-linear grammar.

## Example 1:

$$
\begin{aligned}
& \mathrm{G}=( \{\mathrm{S}\},\{\mathrm{a}, \mathrm{~b}\}, \mathrm{S}, \mathrm{P}), \mathrm{P}= \\
& \mathrm{S} \rightarrow \mathrm{abS} \\
& \mathrm{~S} \rightarrow \lambda \\
& \mathrm{~S} \rightarrow \mathrm{Sab}
\end{aligned}
$$

## Example 2:

$$
\begin{gathered}
\mathrm{G}=(\{\mathrm{S}, \mathrm{~B}\},\{\mathrm{a}, \mathrm{~b}\}, \mathrm{S}, \mathrm{P}), \mathrm{P}= \\
\mathrm{S} \rightarrow \mathrm{aB}|\mathrm{bS}| \lambda \\
\mathrm{B} \rightarrow \mathrm{aS} \mid \mathrm{bB}
\end{gathered}
$$

Theorem: L is a regular language iff $\exists$ regular grammar $G$ s.t. $L=L(G)$.

## Outline of proof:

$(\Longleftarrow)$ Given a regular grammar G
Construct NFA M
Show $L(G)=L(M)$
$(\Longrightarrow)$ Given a regular language
$\exists$ DFA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$
Construct reg. grammar G
Show $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$

## Proof of Theorem:

$(\Longleftarrow)$ Given a regular grammar G
$\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
$\mathrm{V}=\left\{V_{0}, V_{1}, \ldots, V_{y}\right\}$
$\mathrm{T}=\left\{v_{o}, v_{1}, \ldots, v_{z}\right\}$
$\mathrm{S}=V_{0}$
Assume G is right-linear
(see book for left-linear case).
Construct NFA M s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$
If $\mathrm{w} \in \mathrm{L}(\mathrm{G}), \mathrm{w}=v_{1} v_{2} \ldots v_{k}$
$\mathrm{M}=\left(\mathrm{V} \cup\left\{V_{f}\right\}, \mathrm{T}, \delta, V_{0},\left\{V_{f}\right\}\right)$
$V_{0}$ is the start (initial) state
For each production, $V_{i} \rightarrow a V_{j}$,

For each production, $V_{i} \rightarrow a$,

Show $L(G)=L(M)$
Thus, given R.G. G,
$\mathrm{L}(\mathrm{G})$ is regular
$(\Longrightarrow)$ Given a regular language L $\exists$ DFA M s.t. $\mathrm{L}=\mathrm{L}(\mathrm{M})$
$\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, q_{0}, \mathrm{~F}\right)$
$\mathrm{Q}=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$
$\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
Construct R.G. G s.t. $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$ $\mathrm{G}=\left(\mathrm{Q}, \Sigma, q_{0}, \mathrm{P}\right)$
if $\delta\left(q_{i}, a_{j}\right)=q_{k}$ then
if $q_{k} \in \mathrm{~F}$ then
Show $\mathrm{w} \in \mathrm{L}(\mathrm{M}) \Longleftrightarrow \mathrm{w} \in \mathrm{L}(\mathrm{G})$
Thus, $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.
QED.

## Example

$$
\begin{gathered}
\mathrm{G}=(\{\mathrm{S}, \mathrm{~B}\},\{\mathrm{a}, \mathrm{~b}\}, \mathrm{S}, \mathrm{P}), \mathrm{P}= \\
\mathrm{S} \rightarrow \mathrm{aB}|\mathrm{bS}| \lambda \\
\mathrm{B} \rightarrow \mathrm{aS} \mid \mathrm{bB}
\end{gathered}
$$

## Example:



