Section: Regular Languages

Regular Expressions
Method to represent strings in a language

+ union (or)
- concatenation (AND) (can omit)
* star-closure (repeat 0 or more times)

Example:
$(a+b)^{*} \circ a \circ(a+b)^{*}$

Example:
$(a a)^{*}$

Definition Given Σ,

1. $\emptyset, \lambda, a \in \Sigma$ are R.E.
2. If r and s are R.E. then

- $\mathrm{r}+\mathrm{s}$ is R.E.
- rs is R.E.
- (r) is a R.E.
- r^{*} is R.E.

3. r is a R.E. iff it can be derived from
(1) with a finite number of applications of (2).

Definition: L(r) = language denoted by R.E. r.

1. $\emptyset,\{\lambda\},\{a\}$ are \mathbf{L} denoted by a R.E.
2. if r and s are R.E. then
(a) $\mathrm{L}(\mathrm{r}+\mathrm{s})=\mathrm{L}(\mathrm{r}) \cup \mathrm{L}(\mathrm{s})$
(b) $\mathrm{L}(\mathrm{rs})=\mathrm{L}(\mathrm{r}) \circ \mathrm{L}(\mathrm{s})$
(c) $\mathrm{L}((\mathrm{r}))=\mathrm{L}(\mathrm{r})$
(d) $\mathrm{L}\left((\mathrm{r})^{*}\right)=\left(\mathrm{L}(\mathrm{r})^{*}\right)$

Precedence Rules
 * highest
 0
 $+$

Example:
$a b^{*}+c=$

Examples:

1. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has an odd number of a 's followed by an even number of b 's $\}$.
2. $\Sigma=\{a, b\},\left\{w \in \Sigma^{*} \mid w\right.$ has no more than $3 a$'s and must end in $a b\}$.
3. Regular expression for positive and negative integers

Section 3.2 Equivalence of DFA and R.E.

Theorem Let r be a R.E. Then \exists NFA M s.t. $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{r})$.

- Proof:
\emptyset
$\{\lambda\}$
$\{a\}$
Suppose r and s are R.E.

1. $\mathrm{r}+\mathrm{s}$
2. ros
3. \mathbf{r}^{*}

Example

$a b^{*}+c$

Theorem Let L be regular. Then \exists R.E. r s.t. $L=L(r)$.

Proof Idea: remove states sucessively until two states left

- Proof:
L is regular
$\Rightarrow \exists$

1. Assume M has one final state and $q_{0} \notin F$
2. Convert to a generalized transition graph (GTG), all
possible edges are present.
If no edge, label with
Let $r_{i j}$ stand for label of the edge from q_{i} to q_{j}
3. If the GTG has only two states, then it has the following form:

In this case the regular expression is:
$r=\left(r_{i i}^{*} r_{i j} r_{j j}^{*} r_{j i}\right)^{*} r_{i i}^{*} r_{i j} r_{j j}^{*}$
4. If the GTG has three states then it must have the following form:

REPLACE
$r_{i i}$
r_{j}
$r_{i j}$
$r_{j i}$

WITH
$r_{i i}+r_{i k} r_{k k}^{*} r_{k i}$
$r_{j j}+r_{j k} r_{k k}^{*} r_{k j}$
$r_{i j}+r_{i k} r_{k k}^{*} r_{k j}$
$r_{j i}+r_{j k} r_{k k}^{*} r_{k i}$
remove state q_{k}
5. If the GTG has four or more states, pick a state q_{k} to be removed (not initial or final state).

For all $o \neq k, p \neq k$ use the rule $r_{o p}$ replaced with $r_{o p}+r_{o k} r_{k k}^{*} r_{k p}$ with different values of o and p.

When done, remove q_{k} and all its edges. Continue eliminating states until only two states are left. Finish with step 3.
6. In each step, simplify the regular expressions r and s with:
$r+r=r$
$s+r^{*} s=$
$r+\emptyset=$
$r \emptyset=$
$\emptyset^{*}=$
$r \lambda=$
$(\lambda+r)^{*}=$
$(\lambda+r) r^{*}=$
and similar rules.

Example:

Grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$
V variables (nonterminals)
T terminals
S start symbol
P productions

Right-linear grammar:

> all productions of form
> A $\rightarrow \mathbf{x B}$
> $\mathbf{A} \rightarrow \mathbf{x}$
> where $\mathbf{A}, \mathbf{B} \in \mathbf{V}, x \in \mathbf{T}^{*}$

Left-linear grammar:

$$
\begin{gathered}
\text { all productions of form } \\
\mathbf{A} \rightarrow \mathbf{B x} \\
\mathbf{A} \rightarrow \mathbf{x} \\
\text { where } \mathbf{A}, \mathrm{B} \in \mathbf{V}, \mathrm{x} \in \mathbf{T}^{*}
\end{gathered}
$$

Definition:
A regular grammar is a right-linear or left-linear grammar.

Example 1:

$$
\begin{aligned}
\mathbf{G}=(& \{\mathbf{S}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P}), \mathbf{P}= \\
& \mathbf{S} \rightarrow \mathbf{a b S} \\
& \mathbf{S} \rightarrow \lambda \\
& \mathbf{S} \rightarrow \mathbf{S a b}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \mathbf{G}=(\{\mathbf{S}, \mathbf{B}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P}), \mathbf{P}= \\
& \mathbf{S} \rightarrow \mathbf{a B}|\mathbf{b S}| \lambda \\
& \mathbf{B} \rightarrow \mathbf{a S} \mid \mathrm{bB}
\end{aligned}
$$

Theorem: L is a regular language $\operatorname{iff} \exists$ regular grammar G s.t. $L=L(G)$. Outline of proof:
(\Longleftarrow) Given a regular grammar \mathbf{G} Construct NFA M Show $L(G)=L(M)$
(\Longrightarrow) Given a regular language \exists DFA M s.t. $L=L(M)$
Construct reg. grammar G Show $L(G)=L(M)$

Proof of Theorem:

(\Longleftarrow) Given a regular grammar G
$\mathbf{G}=(\mathbf{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$

$$
\mathbf{V}=\left\{V_{0}, V_{1}, \ldots, V_{y}\right\}
$$

$$
\mathbf{T}=\left\{v_{o}, v_{1}, \ldots, v_{z}\right\}
$$

$\mathbf{S}=V_{0}$
Assume G is right-linear
(see book for left-linear case).
Construct NFA M s.t. $L(G)=L(M)$
If $\mathbf{w} \in \mathbf{L}(\mathbf{G}), \mathbf{w}=v_{1} v_{2} \ldots v_{k}$
$\mathbf{M}=\left(\mathbf{V} \cup\left\{V_{f}\right\}, \mathbf{T}, \delta, V_{0},\left\{V_{f}\right\}\right)$
V_{0} is the start (initial) state For each production, $V_{i} \rightarrow a V_{j}$,

For each production, $V_{i} \rightarrow a$,

Show $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$
Thus, given R.G. G, $\mathrm{L}(\mathrm{G})$ is regular
(\Longrightarrow) Given a regular language L \exists DFA M s.t. $L=L(M)$
$\mathbf{M}=\left(\mathbf{Q}, \Sigma, \delta, q_{0}, \mathbf{F}\right)$
$\mathbf{Q}=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$
$\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$
Construct R.G. G s.t. $L(G)=L(M$
$\mathbf{G}=\left(\mathbf{Q}, \Sigma, q_{0}, \mathbf{P}\right)$
if $\delta\left(q_{i}, a_{j}\right)=q_{k}$ then
if $q_{k} \in \mathbf{F}$ then
Show $\mathbf{w} \in \mathbf{L}(\mathbf{M}) \Longleftrightarrow \mathbf{w} \in \mathbf{L}(\mathbf{G})$
Thus, $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.
QED.

Example

$$
\begin{aligned}
\mathbf{G}= & (\{\mathbf{S}, \mathbf{B}\},\{\mathbf{a}, \mathbf{b}\}, \mathbf{S}, \mathbf{P}), \mathbf{P}= \\
& \mathbf{S} \rightarrow \mathbf{a B}|\mathbf{b S}| \lambda \\
& \mathbf{B} \rightarrow \mathbf{a S} \mid \mathbf{b B}
\end{aligned}
$$

Example:

